

Semistructured
Database Design

Web Information Systems Engineering
and Internet Technologies

Book Series

Series Editor: Yanchun Zhang, Victoria University, Australia

Editorial Board:
Robin Chen, AT&T
Umeshwar Dayal, HP
Arun Iyengar, IBM
Keith Jeffery, Rutherford Appleton Lab
Xiaohua Jia, City University of Hong Kong
Yahiko Kambayashi† Kyoto University
Masaru Kitsuregawa, Tokyo University
Qing Li, City University of Hong Kong
Philip Yu, IBM
Hongjun Lu, HKUST
John Mylopoulos, University of Toronto
Erich Neuhold, IPSI
Tamer Ozsu, Waterloo University
Maria Orlowska, DSTC
Gultekin Ozsoyoglu, Case Western Reserve University
Michael Papazoglou, Tilburg University
Marek Rusinkiewicz, Telcordia Technology
Stefano Spaccapietra, EPFL
Vijay Varadharajan, Macquarie University
Marianne Winslett, University of Illinois at Urbana-Champaign
Xiaofang Zhou, University of Queensland

Semistructured
Database Design

Tok Wang Ling
Mong Li Lee

National University of Singapore

Gillian Dobbie
The University of Auckland

Springer

eBook ISBN: 0-387-23568-X
Print ISBN: 0-387-23567-1

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Contents

List of Figures
List of Tables
Preface

INTRODUCTION1.

Chapter Overview1.1

DATA MODELS FOR SEMISTRUCTURED DATA2.

Document Type Definition

DOM, OEM and DataGuide

S3-graph

CM Hypergraph and Scheme Tree

EER and XGrammar

AL-DTD and XML Tree

ORA-SS

Discussion

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

ix
xiii
xv

1

3

7

8

12

16

18

21

24

28

32

37

37

49

52

55

57

59

60

62

3. ORA-SS

ORA-SS Schema Diagram

ORA-SS Data Instance Diagram

ORA-SS Functional Dependency Diagram

ORA-SS Inheritance Hierarchy Diagram

Discussion

3.1

3.2

3.3

3.4

3.5

SCHEMA EXTRACTION4.

Basic Extraction Rules

Schema Extraction Algorithm

4.1

4.2

vi

Example

Discussion

Summary

4.3

4.4

4.5

NORMALIZATION5.

Motivating Example

Background

A Normal Form For Semistructured Schemas

Converting Schemas into the Normal Form

Discussion

66

74

75

77

78

82

85

89

5.1

5.2

5.3

5.4

5.5

VIEWS6.

Motivating Example

The Select Operator

The Drop Operator

The Join Operator

The Swap Operator

Design Rules for IDentifier Dependency Relationship

Example of Designing View

Related Work

Summary

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

107

111

112

116

117

121

125

132

134

136

138

139

139

141

143

146

150

153

154

158

160

161

165

PHYSICAL DATABASE DESIGN7.

Relational Database Physical Design

IMS Database Physical Design

Redundancy in ORA-SS Schema Diagram

Replicated NF in ORA-SS

Controlled Pairing in ORA-SS Schema Diagrams

Measure of Data Replication

Guidelines for Physical Semistructured Database Design

Storage of Documents in an Object Relational Database

Summary

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8. CONCLUSION

Appendices

Contents

References

Index

About the Authors

vii

169

173

175

List of Figures

Example XML document

A DTD for the document in Figure 2.1

A DTD for the document in Figure 2.1 without replication

A DOM tree for the document in Figure 2.1

An (a) OEM diagram and its (b) DataGuide for the doc-
ument in Figure 2.1

An S3-Graph for the document in Figure 2.1

A CM Hypergraph and Scheme Tree for the schema in
Figure 2.3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

9

10

11

14

15

18

20

An EER diagram and XGrammar definition for Exam-
ples 2.7 and 2.8

An EER diagram and XGrammar definition represent-
ing ordering on student within course

A textual representation of the XML Tree in Figure 2.11

A diagram of the XML Tree in Figure 2.10

An AL-DTD schema for the XML Tree in Figures 2.10
and 2.11

An ORA-SS Instance Diagram for the document in Figure 2.1
An ORA-SS schema diagram for the document in Fig-
ure 2.1

An ORA-SS schema diagram showing binary and ternary
relationships
An ORA-SS schema diagram showing ordering of stu-
dents and hobbies

Object class student with attributes in an ORA-SS Schema
Diagram

2.8

2.9

2.10

2.11

2.12

2.13

2.14

22

23

25

26

28

30

31

33

33

38

2.15

2.16

3.1

x

Representing binary relationship types in an ORA-SS
Schema Diagram
Representing ternary relationship types in an ORA-SS
Schema Diagram
Representing a binary and ternary relationship type in
an ORA-SS Schema Diagram

Object classes with no identifier or a weak identifier in
an ORA-SS Schema Diagram
Object classes with relationship types and attributes in
an ORA-SS Schema Diagram

Referencing an object class in an ORA-SS Schema Diagram
Example of a recursive relationship in ORA-SS Schema
Diagrams
Symmetric relationship in an ORA-SS Schema Diagram
Ordered object classes, attributes, and attribute values
in an ORA-SS Schema Diagram

Disjunctive attribute and object classes in an ORA-SS
Schema Diagram

ORA-SS Instance Diagram for document in Figure 2.1
An XML Document for the ORA-SS Instance Diagram
in Figure 3.12

ORA-SS Schema Diagram for document in Figure 3.12

An DTD for the ORA-SS Schema Diagram in Figure 3.14

Functional dependency diagram enhancing the infor-
mation in Figure 3.7

ORA-SS Schema Diagram and Inheritance Diagram

Example ORA-SS schema
Initial ORA-SS schema structure after Step 1

Final ORA-SS schema obtained after Step 2

DataGuide extracted from sample XML document
Example XML document with redundant information

An ORA-SS schema diagram for document in Figure 5.1

An ORA-SS schema diagram, where valid documents
do not contain redundant information
A DTD for the schema diagram in Figure 5.3

Example XML document without redundant information
ORA-SS schema diagrams for example 5.4

ORA-SS schema diagrams for example 5.5

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9
3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1
4.2
4.3

4.4

5.1
5.2

5.3

5.4

5.5
5.6

5.7

40

40

42

44

45

46

47
47

49

50
51

52

53

53

55
56

60
69

74
74

78
79

80

80
81

87

87

List of Figures

ORA-SS schema diagram that is not in NF
An NF ORA-SS schema diagram for Figure 5.8
Figures for Example 5.7 illustrating Algorithm ConvertNF

Figures for Example 5.7 illustrating Algorithm ConvertNF

Figures for Example 5.8 illustrating Algorithm ConvertNF

Figures for Example 5.8 illustrating Algorithm ConvertNF
Figures for Example 5.9 illustrating Algorithm ConvertNF

Figures for Example 5.10 illustrating Algorithm ConvertNF
Figures for Example 5.11 illustrating Algorithm ConvertNF

Figures for Example 5.11 illustrating Algorithm ConvertNF
Figures for Example 5.11 illustrating Algorithm ConvertNF

Figures for Example 5.11 illustrating Algorithm ConvertNF
A Supplier-Part-Project ORA-SS Schema Diagram

An Invalid XML View of the Supplier-Part-Project Schema
in Figure 6.1
A Valid XML View of the Supplier-Part-Project Schema
in Figure 6.1
An XML View of the Supplier-Part-Project Schema in
Figure 6.1 obtained by the Selection Operator

An XML View of the Supplier-Part-Project Schema in
Figure 6.1 obtained by the Drop Operator

ORA-SS source schema involving Project, Staff and
Publication.

An ambiguous view of Figure 6.6.

A valid view of Figure 6.6. The new relationship type
jp is derived by joining js and sp.

ORA-SS schema diagram on Project, Supplier, Part and
Retailer

View of Figure 6.9 obtained by a join operation
ORA-SS schema of Supplier-Part-Project
View of Figure 6.11 obtained by a swap operation
Handling relationship types that are affected by a swap
operation.

Handling relationship types that involve the descen-
dants of

ORA-SS schema of course-student-lecturer
An invalid view of Figure 6.15 after swapping student
and course

5.8
5.9
5.10

5.11

5.12

5.13
5.14
5.15

5.16
5.17
5.18

5.19
6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8

6.9

6.10

6.11
6.12

6.13

6.14

6.15

6.16

xi

90
91

95

96

97

99
100
102

103
104
105

106
113

115

115

117

118

121

122

122

123
124

126
126

129

129
131

131

xii

A valid reversible view of Figure 6.15 after swapping
student and course

ORA-SS schema containing an IDD relationship type

ORA-SS schema of a view that swaps employee and child

ORA-SS schema of a view that drops employee

Example ORA-SS schema
View of Figure 6.21 obtained by a join and a drop operator
View obtained by swapping part and project’ in Figure 6.22
View obtained by swapping employee and child in Figure 6.23
Database design using IMS
Using logical parent pointers to remove redundancy
Physical pairing in IMS
Many to many relationship type

Symmetric relationship type
Relationship type nested under many to many relation-
ship type

6.17

6.18

6.19
6.20

6.21
6.22
6.23
6.24

7.1
7.2
7.3
7.4

7.5
7.6

132

133

133

133
135
135
136
137
142
142
143
144
144

Precomputed derived and aggregate attributes
Replication of references for recursive query
Duplication of staff information in document

NF ORA-SS schema diagram
Replicated NF ORA-SS schema diagram with allowed
replication of relatively stable attributes, name and birthdate

145
146

146
147
148

7.7
7.8
7.9

7.10
7.11

NF ORA-SS Schema Diagram
Symmetric relationship type

Repeating relationship type
Cost of physical storage design
Resulting ORA-SS Schema with controlled replication

Mapping ORA-SS Schema Diagram to object relational
model
Steps in the Design of Repositories for Semistructured Data

7.12
7.13
7.14
7.15
7.16

7.17

8.1

149

150
150
152
155
157

159
162

List of Tables

Essential concepts of a data model for semistructured data
Features supported in XML Data Models
Object class tables course, lecturer, student and tutor

Final object class tables student and tutor

Relationship type tables cst and cl

Final relationship type tables cs, cst and cl

2.1

2.2
4.1
4.2

4.3
4.4

8
34

70
71
72

73

Preface

About This Book

The work presented in this book came about after we recognized that ill-
designed semistructured databases can lead to update anomalies, and there is a
strong need for algorithms and tools to help users design storage structures for
semistructured data. We have been publishing papers in the design of databases
for semistructured data since 1999, and believe that after a number of attempts
we have defined a data model that captures the necessary semantics for repre-
senting the semantics that are necessary in the design of good semistructured
databases.

This book describes a process that initially takes a hardline approach against
redundant data, and then relaxes the approach for gains in query performance.
The book is suited to both researchers and practitioners in the field of semistruc-
tured database design.

Some of the material in this book has been published at international con-
ferences. The material in Chapter 5 was originally based on work presented
in [Wu et al., 2001a] and Chapter 6 was originally based on [Chen et al., 2002].
The material in Chapter 3 was published as a technical report at the National
University of Singapore [Dobbie et al., 2000].

Use of the Book

The target audience of this book is practitioners who design semistructured
data file organizations or semistructured databases, researchers who work in
the area of semistructured data organization, and students with an interest in
the design of storage organizations for semistructured data. The material is as
relevant for file organizations as it is for databases since inconsistencies can
also exist in data files.

xvi

Major Contribution
This major contributions of this book are:

a comparison of data models for the purpose of designing storage organi-
zations for semistructured data,

the introduction of a data model, called Object Relationship Attribute Data
Model for SemiStructured Data, or ORA-SS, which represents what we
believe are the necessary semantics for the design of storage organizations
for semistructured data,

an algorithm for the extraction of a schema from a semistructured data in-
stance, such as an XML document,

a normalization algorithm for semistructured schemas,

a set of rules for the validatation of views created on an underlying semistruc-
tured instance,

an algorithm for the denormalization of semistructured schemas.

Acknowledgements
This work has been supported by the following grants:

National University Of Singapore Academic Research Fund
R-252-000-093-112, Building a semi-structured data repository
R-252-100-105-112, Integrating Data Warehouses on the Web

University of Auckland
Research and Study Leave Grant
Staff Research Fund, Semistructured database design

Our special thanks goes to the following students: Yabing Chen, Xiaoying
Wu, Wei Ni, Yuanying Mo, Xia Yang, Wai Lup Low, Lars Neumann.

TOK WANG LING, MONG LI LEE AND GILLIAN DOBBIE

Chapter 1

INTRODUCTION

Today, many computer systems produce and consume large amounts of data.
Consider a library catalogue system that stores the details of the holdings in a
library and allows users to query information and perhaps even request books,
or an accounting system that reads data from files, transforms it and prints
reports. In the past much of the data has been stored in relational database
systems and the designers of the computer systems have paid special attention
to the organization or structure of this data. We have since moved to the age of
the World Wide Web (or web) where many new technologies and applications
have emerged. Many of the applications built today are web based, and the
corresponding technologies that are used have been specifically designed for
the web.

Let us consider how data was stored before the advent of the web. Data was
stored in files or in databases. For the former, the entire file is read from and
written to disk when data is needed. This works well for applications that do
not use large amounts of data, that is, applications that can read the entire file
into memory, manipulate the data and write the file back out to disk. However,
this approach is inadequate for systems that require more data than can fit in
main memory. For these kinds of applications, a database is required.

The use of databases leads to new problems including how to maintain the
consistency of the data with respect to real world constraints. For example,
suppose we have a database that stores details of students. Is it possible to
ensure that a student’s address appears in the database only once. If the ad-
dress appears multiple times, then how can we guarantee the consistency of
the repeated data? It is necessary to model the constraints in the database if we
want the database system to enforce these constraints. Some constraints can
be enforced by the organization or structure of the data while others must be
programmed as general constraints.

2

Yet another problem that arises from the use of database systems is how
should the constraints from the real world be captured during the design pro-
cess. Typically they are recorded in a conceptual model such as an Entity-
Relationship diagram. Such constraints contain semantic information, that
is, they provide some meaning to the underlying data. It is important that
these constraints are enforced by the database. When data is manipulated,
the database system checks that none of the constraints are violated. In other
words, the semantics from the real world still hold in the result of the manipu-
lation.

Traditional relational databases which assume that data is structured are no
longer suitable for the new Web applications because the data on which the
Web applications are based lacks structure and may be incomplete. Thus, many
of the techniques that were previously used may not be applicable. This less
structured data, also known as semistructured data, is usually represented as a
tree of elements, where the children are sub-elements of their parent element.
Elements can in turn have attributes. Queries over the trees are represented as
path expressions.

The eXtensible Markup Language (XML) [Bray et al., 2000] is a language
that is used to express semistructured data. XML is self-describing since each
element has a tag which gives a name for the content. However, recently, vari-
ous schema languages have been defined to specify the structure of the underly-
ing XML data and constraints that are expected to hold in instances of the XML
data. The schemas are descriptive rather than prescriptive. Like traditional
data, XML data may be stored in files or in a database. The database can have
an underlying relational engine or it can be specifically designed for XML data.
The former are called XML-enabled databases and the latter are called native
XML databases. Like the entity relationship diagram for relational databases,
a diagrammatic representation that reflects real world constraints could be used
for requirements gathering, and for the design of schemas for semistructured
documents.

Information integration is an important area that has been revisited with
the introduction of XML. It is important that the meaning of the underlying
documents is reflected in the resulting integrated document. Since much of
the meaning can be captured in constraints, the constraints on the underlying
documents should also be enforced in the resulting document. If the semantics
of the underlying documents and the semantics of the resulting document can
be modeled using a diagrammatic representation that reflects the constraints,
then it is possible to check that information is not lost during the process of
integration.

In this book, we investigate the semantics that need to be captured for
semistructured data, and the different ways of representing the semantics. The
rest of the book is organized as follows. Chapter 2 introduces and evaluates the

Introduction 3

various data models that have been proposed for semistructured data. Chap-
ter 3 gives a more detailed description of one of the data models, ORA-SS
(Object-Relationship-Attribute data model for SemiStructured data). Chapter 4
investigates schema extraction, examining the constraints that can be extracted
from an instance of semistructured data. Algorithms for removing redundancy
from a semistructured data instance are presented in Chapter 5. This is ac-
complished by specifying the structure of the schema in such a way that the
semantics of the data is taken into account. Without knowing the constraints
on the data, it is easy to define views that have no meaning with respect to the
real world. Chapter 6 examines the design of views over semistructured data
and the validity of the views, that is, whether the views designed are consis-
tent with respect to the semantics in the underlying data. Chapter 7 discusses
the physical storage of semistructured data, and investigates the relaxation of
some of the rules presented in Chapter 5 in order to improve performance of
the resulting data store. Finally, we conclude in Chapter 8 with directions for
future research.

1.1 Chapter Overview
The aim of this book is to describe how semantic constraints can be modeled

and used in the design of semistructured databases. The target audience is prac-
titioners who design semistructured data file organizations or semistructured
databases, and researchers who work in the area of semistructured data orga-
nization. The material is as relevant for file organizations as it is for databases
since inconsistencies can also exist in data files. In this section, we give a
preview the materials presented in the subsequent chapters.

Data Models for Semistructured Data

Traditional data models capture constraints such as key constraints, foreign
key constraints, functional dependencies, uniqueness constraints, cardinality
constraints and participation constraints, when modeling data from the real
world. The constraints captured in the data models are used in the design of
databases. Data models for semistructured data initially captured information
that is important for information integration. More recently richer data models
for semistructured data have been defined for data management.

Data models such as OEM [McHugh et al., 1997], DOM [Apparao and
Byrne, 1998], and DataGuides [Goldman and Widom, 1997] have been de-
signed for the express purpose of information integration and finding a com-
mon schema of two or more information sources. The focus of these data
models is on modeling the nested structure of semistructured data, and not on
modeling the constraints that hold in the data. In contrast, data models such
as S3-graphs [Lee et al., 1999], CM Hypergraphs [Embley and Mok, 2001],

4

extended Entity Relationship notation [Mani et al., 2001], XML Trees [Are-
nas and Libkin, 2004], and ORA-SS [Dobbie et al., 2000] have been defined
specifically for data management. This chapter will review these data models
and evaluate how well each of them model the constraints that are necessary
for managing semistructured data.

Schema Extraction

A semistructured data instance may not have a schema that is fixed in ad-
vance. Deriving a schema for semistructured data is problematic since the
structure of these data is irregular, unknown and changes often. The lack of a
schema renders data storage, indexing, querying and browsing inefficient, or
even impossible. Researchers have proposed some methods to extract a schema
from semistructured data, and express the resulting schema using DataGuides,
or a set of data path expressions. These methods extract only the structural
information and ignore much of the useful semantic information.

This chapter describes an algorithm that extracts a schema from an XML
data instance. Since it is not possible to extract all the necessary informa-
tion from a data instance, the algorithm will indicate what schema information
cannot be derived and provide questions that must be asked to derive this in-
formation. The extracted schema is expressed in a general form and can be
translated to an XML schema language such as DTD [Bray et al., 2000], XML
Schema [Thompson et al., 2001] and RELAXNG [ISO/IEC, 2000].

Normalization

The replication of data in a database can lead to inconsistencies in the data if
one copy of the data is updated and another copy is not. In relational databases,
normalization provides a well understood process for eliminating redundant
data.

With the increasing amount of semistructured data available on the Web,
it is important to provide guidelines for designing “good” semistructured data
organizations. Several proposals for semistructured normal forms and related
design techniques have been developed, including S3-NF [Lee et al., 1999],
XNF [Embley and Mok, 2001], NF-SS [Wu et al., 2001b], and XNF [Arenas
and Libkin, 2004].

This chapter defines a normal form based on the ORA-SS [Dobbie et al.,
2000] data model. We define an algorithm that maps an ORA-SS schema di-
agram to a normal form ORA-SS schema diagram, and compare the proposed
normal form with existing ones.

Introduction 5

Views
It is essential to provide support for XML views so that users can view the

data from different perspectives. Many university prototypes and commercial
systems provide the ability to specify and query views. SilkRoute [Fernandez
et al., 2000] and XPERANTO [Carey et al., 2000] provide for the definition of
views over relational data. Xyleme [Cluet et al., 2001] and Active View [Abite-
boul et al., 1999a] allow XML views over native XML files. XML views are
also supported as a middleware in integration systems, such as MIX [Baru
et al., 1999], YAT [Christophides et al., 2000] and Agora [Manolescu et al.,
2001]. All these systems exploit the potential of XML by exporting their data
into XML views. However, the majority of these systems are focus on views
created using the selection operation and do not guarantee that the derived
views are valid.

This chapter presents an approach to design and query semistructured views
based on the semantically rich ORA-SS conceptual model. We describe a sys-
tematic approach to design XML views that ensures the validity of the result-
ing view. We identify four transformation operations for creating XML views,
namely, select, drop, join, and swap operations, and develop rules to ensure
that the views designed preserve the semantics in the underlying source data.

Physical Database Design
Removing redundancies from a data repository ensures that there are no

updating anomalies. However, as in traditional databases, the repetition of
information can improve the speed of data retrieval.

This chapter investigates the various types of redundancy that may arise in
semistructured data repositories. One instance where the normalization rules
can be relaxed is when the relationship between two entities almost never
changes, and when functional dependencies hold in general but may be vio-
lated in rare cases [Ling et al., 1996]. Another instance where the normaliza-
tion rules can be relaxed is when there is a recognized pairing between object
classes [Date, 1975]. We investigate how the cost of duplication can be com-
puted, and present guidelines for the design of semistructured database, which
include normalization and the relaxation of the normalization rules. Finally we
describe a mapping from the ORA-SS schema diagram to the nested relational
model, which ensures efficient and consistent storage.

Chapter 2

DATA MODELS FOR SEMISTRUCTURED DATA

Traditionally, real world semantics are captured in a data model, and mapped
to the database schema. The real world semantics are modeled as constraints
and used to ensure consistency of the data in the resulting database. Similarly,
in semistructured databases the consistency of the data can be enforced through
the use of constraints. There are two approaches to designing a schema for a
semistructured database. The first follows the traditional approach and cap-
tures the real world constraints in a data model. The second approach is used
in the case where a semistructured document exists without a schema. Follow-
ing this approach the constraints are extracted from the document and modeled
using a data model.

A data model that is used in the design of schemas for semistructured data
has different requirements than those used in the design of schemas for re-
lational databases. In order to support the second approach outlined above,
the data model must provide a way to model the document instance, the doc-
ument schema, and identifying attributes of element sets. The fundamental
concepts of semistructured data must also be part of the model. They include
the hierarchical structure of element sets, and ordering of element sets and at-
tributes. The model must also be able to represent constraints that are needed
in the design of schemas such as binary and n-ary relationship sets, participa-
tion constraints of element sets in relationship sets, attributes and element sets,
and attributes of relationship sets.

Table 2.1 gives a summary of the concepts that are important in a data model
for semistructured data. The exact meaning of these concepts will be uncov-
ered in later sections of this chapter and the reason we have chosen this partic-
ular set of requirements will be explained in subsequent chapters in this book.

The following is a running example that is based on the XML document in
Figure 2.1. We use the term element to describe a particular element and a tag

8

name in a document, and the term element set to describe a set of elements
with the same tag name in a document. Similarly, we use the term relationship
to describe a relationship between two elements in a document and the term
relationship set to describe a set of relationships which relate instances of the
same element sets.

Example 2.1 In the XML document in Figure 2.1, there are element sets de-
partment, course, title, student, stuName, address, hobby and grade. Elements
are instances of the element sets, so there is a course element that has an at-
tribute code with value “CS1102”, and another course element that has an
attribute code with value “CS2104”.

The nesting of the element sets forms the hierarchical structure of the docu-
ment, e.g. course is nested within department, student is nested within course,
and so on. We say there is a relationship set between department and course,
and a relationship set between course and student. Relationships are instances
of relationship sets, so there is a relationship between element department that
has an attribute name with value “CS” and element course that has an attribute
code with value “CS1102 ”.

Element sets have attributes, e.g. name is an attribute of department, and
code is an attribute of course.

In the following sections, we will survey some of the main data models that
have been proposed for semistructured documents, such as DTD and DOM,
and compare them.

2.1 Document Type Definition
The Document Type Definition (DTD) language [Bray et al., 2000] and

other schema definition languages, such as XML Schema [Thompson et al.,

Data Models for Semistructured Data 9

Figure 2.1. Example XML document

2001] and RELAXNG [ISO/IEC, 2000], have become a familiar way to repre-
sent the schema of an XML document. The DTD language uses regular expres-
sions to describe the schema. In the DTD language, it is possible to represent
element sets, the hierarchical structure of element sets, and some constraints
on the element sets, attributes, and relationship sets. We investigate how these
concepts are represented in the DTD in this section.

In a DTD, the participation constraint on a child element set in a relationship
set is stated explicitly using the symbols ?, +, * which represent zero-to-one
occurrences (written as 0 : 1), one-to-many occurrences (written as and
zero-to-many occurrences (written as respectively. Element sets either
form a sequence (that is, there is an ordering specified on them) or they are
disjunctive (that is, one or other of them occurs). An attribute can be tagged
as an identifier, indicating that it is expected to have a unique value within an
instance XML document. An attribute can have a string value or be a reference

10

Figure 2.2. A DTD for the document in Figure 2.1

to the identifying attribute of an element set. For attributes it is possible to
specify if they are required, optional, have a default value or have a fixed value.

Example 2.2 Consider the DTD in Figure 2.2 for the document in Figure 2.1.
The hierarchical structure is represented in the nesting of the element sets.
For example, the second line in Figure 2.2 states that the element set course
is a subelement of the element set department. The second line also specifies
the participation constraint on the element set course in the relationship set
between department and course, namely, that there can be one or more courses
in each department (indicated by the “+ ”).

The third line of the DTD shows that element set department has an at-
tribute name. The keyword “#REQUIRED” indicates that the attribute name
must appear in every department, while the keyword “ID” indicates that the
value of the attribute is unique within the XML document. That is, there is only
one department with any particular name in this document.

The following two lines show that the element set course has subelement
sets title and student. They occur as a sequence in the order specified, and
every course has an optional title and zero or more students. The keyword
“#PCDATA” indicates that element set title is a leaf element set, that is it has
no subelement sets and instead elements belonging to this set have a value.

The last six lines describe the element set student, which has subelement
sets stuName, address, hobby and grade, and attribute stuNo. Although the
attribute stuNo is an identifier in the usual sense, it is not represented as an
ID attribute in the DTD because the same student can take many courses, and
thus, there will be many student elements with the same value for stuNo as
demonstrated in the XML document in Figure 2.1.

The schema described in the DTD in Figure 2.2 represents the structure
of the XML document in Figure 2.1. However, there is a problem with this

Data Models for Semistructured Data 11

Figure 2.3. A DTD for the document in Figure 2.1 without replication

schema. Data is replicated in the instance, for example, the details of each
student are repeated for every course the student takes. This replication of
information can be avoided if the structure of the XML document is changed.

Example 2.3 Figure 2.3 shows a possible schema that does not exhibit data
replication. In this schema, student is no longer nested within course. The
element set student is now nested within enrollment and there is a reference
from course to student. Based on real world semantics, we know that grade
represents the grade of a student within a course. Thus, in Figure 2.3, grade
is more correctly represented as an attribute of the relationship (or reference)
between course and student.

Let us take a closer look at the DTD in Figure 2.3. Element set department
has subelement set course. Element set course has subelement sets title and
stuRef. Element set stuRef has a subelement set grade and an attribute
stuNo. The attribute stuNo is like a foreign key, referring to a student with a
particular stuNo. Notice that there will only be one element for each student
in an XML document, so attribute stuNo can be an ID attribute of element set
student.

We now consider how well the DTD language supports the requirements of
a data model for designing a schema for a semistructured document. The DTD
describes only the schema and does not describe an instance of the document.
The hierarchical structure of element sets is supported well but the only re-
lationship sets that can be described directly are those within the hierarchical
structure.

Example 2.2 illustrates one of the problems that arises through only being
able to directly support the hierarchical relationship. Relationships that are not

12

hierarchical relationships can be modeled using references. Similarly relation-
ships of degree where can be modeled using references. However,
without a direct way of supporting these kinds of relationships, valuable se-
mantic information is lost.

Even when the DTD is small and not very complex, as shown in Figure 2.2,
it is difficult to quickly gain an idea of the structure of the data without looking
at the details closely.

Participation constraints on children in a relationship set are represented di-
rectly. For example in Figure 2.2, a course has zero to many students. However
it is not possible to express participation constraints on parents of a relationship
set. For example, we cannot indicate that a student can take many courses.

The concepts of element sets and attributes follow the same concepts in
XML documents, which differs from the concepts in data modeling. In data
modeling, an attribute is a property of an element set, but in XML such prop-
erties can be represented using either attributes or element sets. For example,
the element set stuName which is represented as a subelement of student in
Figure 2.3 would normally be considered an attribute in data modeling.

It is not possible to directly distinguish between attributes of element sets
and attributes of relationship sets. For example in Figure 2.2, the element set
grade represents the grade a student scored in a particular course and should
be considered an attribute of the relationship set between element sets course
and student, but it is represented in the same way that an attribute of an object
set is represented, for example it is represented in the same way that element
set stuName, which is simply an attribute of element student, is represented. In
Figure 2.3, a new element set stuRef is introduced specifically for the purpose
of representing the grade as related to the relationship between course and
student. Although the new element set stuRef removes redundancy, it is still
not possible to show that grade is related to the relationship between course
and student.

It is possible to specify an ordering on subelement sets. In fact this order-
ing is possibly stricter than required since it is not easy to specify a group of
subelements where ordering does not matter, which is often what we would
like to represent. For example, in Example 2.2 the subelements of any instance
of student, namely stuName, address, hobby and grade are expected to appear
in that order but from a data modeling perspective we are not concerned with
the ordering of these subelements.

2.2 DOM, OEM and DataGuide
Some other data models that are commonly used to depict XML documents

and their structure are DOM (Document Object Model), OEM (Object Ex-
change Model), and DataGuide.

Data Models for Semistructured Data 13

Document Object Model
The DOM (Document Object Model) [Apparao and Byrne, 1998] depicts

the instance of an XML document as a tree. Each node represents an object
that contains one of the components from an XML structure. The three most
common type nodes are element nodes, attribute nodes and text nodes.

As illustrated in Figure 2.4, text nodes have no name but carry text (e.g.
the text node with text “Data Structure”); attribute nodes have both a name
and carry text (e.g. the attribute node with attribute name name and text value
“CS”); and element nodes have a name and may have children (e.g. the ele-
ment node with element name course). The edges between nodes represent the
relationships between the nodes.

How well does the DOM support the requirements of a data model for de-
signing a schema for a semistructured document? A DOM tree represents the
instance of a document, showing the hierarchical structure of the elements, and
the implicit relationships between the elements due to the hierarchical struc-
ture. It is possible to distinguish between attributes and elements. However,
because the DOM represents an instance of an XML document, it does not rep-
resent schema information directly, such as the degree of relationship sets, and
participation constraints on element sets in relationship sets. For the same rea-
son it is not possible to distinguish between ordered elements and unordered
elements, or whether an attribute belongs to a relationship set or an element
set.

Object Exchange Model
The Object Exchange Model (OEM) [McHugh et al., 1997] also depicts

the contents of an XML document. An OEM model is a labeled directed graph
where the vertices are objects, and the edges are relationships. Figure 2.5(a)
shows the OEM model for the XML document in Figure 2.1.

Each object has a unique object identifier (OID), a label and a value. There
are two types of objects, atomic and complex. Both atomic and complex ob-
jects are depicted as 3-tuples: (OID, label, value). An atomic object contains
a value from one of the disjoint basic atomic types, e.g., integers, real, string,
etc. A complex object is a composition of objects where the value of a complex
object is a set of object references, denoted as a set of (label, OID) pairs. We
illustrate these concepts in Example 2.4.

Example 2.4 Consider the OEM model in Figure 2.5(a). The leaf nodes of the
graph are the atomic objects and the internal nodes are the complex objects.
The complex object with object identifier &1 and name department is specified
in the 3-tuple:

(&1, department, {(name, &2), (course, &4), (course, &5)}),
where the set of tuples represent the objects that object &1 references.

14

Data Models for Semistructured Data 15

16

The three atomic objects with object identifiers &27, &28 and &31 are spec-
ified in the following three 3-tuples respectively showing their OID, name and
value:

(&27, stuNo, stu125)
(&28, stuName, Liang Chen)
(&31, grade, B)

An OEM indicates the hierarchical structure of the objects. Although it
has both the diagrammatic and textual representation, not only does it have
the same shortcomings as the DOM but it also suffers from not distinguishing
between elements and attributes.

DataGuide
A DataGuide [Goldman and Widom, 1997] models the schema of an OEM

instance graph, depicting every path through the instance only once. Figure
2.5 shows the OEM model and its DataGuide for the XML document in Figure
2.1. From the DataGuide, it is easy to see that instances of the element sets
department, course and student are complex objects (depicted by a triangle),
where an instance of the element set department is composed of the atomic ob-
ject name, and the multiple occurrence complex object course, where instances
of the element set course in turn are composed of the atomic objects code and
title, and the multiple occurrence complex object student.

How well does OEM with DataGuides support the requirements of a data
model for designing a schema for a semistructured document? From this ex-
ample, you can see that a DataGuide depicts only the hierarchical structure of
the element sets and like the OEM it does not distinguish between element sets
and attributes. It is in fact less expressive than the DTD since it is not possible
to represent the participation constraints on element sets in relationship sets,
and because there is no distinction between element sets and attributes it is not
possible to represent the constraints on attributes that can be modeled in the
DTD. It is not possible to represent references using OEM and DataGuides,
which means it is not possible to model ID, IDREF and IDREFS from the
DTD.

2.3 S3-graph
A Semi-Structured Schema Graph (S3-Graph) is a directed graph where

each node in the graph can be classified into an entity node or a reference
node. An entity node represents an entity which can be of basic atomic data
type such as string, date or complex object type such as student. The former is
also known as a leaf entity node. A reference node is a node which references
to another entity node.

Data Models for Semistructured Data 17

Each directed edge in the graph is associated with a tag. The tag represents
the relationship between the source node and the destination node. The tag
may be suffixed with a “*”. The interpretations of tag and the suffix depend on
the type of edge. There are three types of edges:

Component Edge

A node is connected to another node via a component edge with a tag
T if is a component of This edge is denoted by a solid arrow line. If
T is suffixed with a “*”, the relationship is interpreted as “The entity type
represented by has many T”. Otherwise, the relationship is interpreted
as “The entity type represented by has at most one T”.

1

2 Referencing Edge

A node is connected to another node via a referencing edge if
references the entity represented by node This type of edge is denoted
by a dashed arrow line.

3 Root Edge

A node is pointed to by a root edge with a tag T if the entity type
represented by is owned by the database. This edge is denoted by a
solid arrow line without any source node for the edge, and there is no suffix
for the tag T. In fact, is a root node in the S3-Graph.

Some roles R can be associated with a node V if there is a directed (compo-
nent or referencing) edge pointing to V with tag R after removing any suffix
“*”.

Example 2.5 Figure 2.6 shows the S3-Graph for the XML document in Fig-
ure 2.1. Node #1 represents an entity node, which represents the entity DE-
PARTMENT. This is also a root node. This node is associated with the role
“department”.

Node #2 is another entity node of which database instance holds a string
representing the NAME of a department. It is associated with the role “name ”,
and it is also a leaf node associated the atomic data type “string”. Hence, any
“NAME” data is of string type. The directed edge between node #1 and node
#2 represents “Each DEPARTMENT has at most one NAME”.

Nodes #3 and #6 are entity nodes which represents the entities COURSE
and STUDENT which are complex object types. A complex object type such as
COURSE is connected to leaf entity nodes #4 and #5 that are associated with
the roles “code” and “title” respectively.

Note that the tag on the edge from node #1 to node #3 is suffixed with a
“*”. Hence, the relationship is interpreted as “A DEPARTMENT has many
COURSE”.

18

Figure 2.6. An S3-Graph for the document in Figure 2.1

How well does S3-Graph support the requirements of a data model for de-
signing a schema for a semistructured document? We observe that S3-Graph
captures the hierarchical structure of the element sets and provides for refer-
ences. However, it does not distinguish between the attributes of entity types
and relationship sets, e.g. it is not clear from the S3-Graph in Figure 2.6 that
grade is an attribute of the relationship between course and student. Further,
the S3-Graph is able to represent one-to-one and one-to-many binary relation-
ship sets, and not ternary relationship sets.

2.4 CM Hypergraph and Scheme Tree
A data model that consists of two diagrams, the CM (conceptual-model)

hypergraph and the scheme tree, was defined in [Embley and Mok, 2001].
The data model was designed to represent the semantics needed when devis-
ing algorithms that ensure the development of XML documents with “good”
properties.

We will adopt the authors’ term “object sets” when referring to “element
sets” in this section. The CM hypergraph models the data conceptually, model-
ing object sets and relationship sets, providing a way to represent some partici-
pation constraints and the generalization relationship. The scheme tree models
only the hierarchical structure of the document.

In the CM hypergraph, object sets are represented as labeled rectangles, e.g.
the object set department. Relationship sets are represented by edges, and par-
ticipation constraints are represented using arrow heads and the symbol “o” on

Data Models for Semistructured Data 19

the edges. An edge with no arrow heads represents a many-to-many relation-
ship set, an edge with one arrow head represents a many-to-one relationship,
and an edge with an arrow head at both ends represents a one-to-one relation-
ship. The symbol “o” indicates that an object is optional.

Another way to view the arrow head notation is as representing functional
dependencies. From the arrow heads, we can derive that code title and that
stuNo {name, address}.

The scheme tree represents the same information that a DataGuide repre-
sents, namely the hierarchical structure of the object sets. The edges represent
the element-subelement relationship. An algorithm that generates the scheme
tree from the CM hypergraph is described in [Embley and Mok, 2001]. Be-
cause the CM hypergraph is more expressive than the scheme tree, it is not
possible to regenerate the CM hypergraph from the scheme tree.

Example 2.6 Consider the CM hypergraph and scheme tree in Figure 2.7.
The CM hypergraph in Figure 2.7(a) has object sets department, name, course,
code, title, student, stuNo, stuName, address, grade and hobby. The CM hy-
pergraph succinctly models the following constraints. A department has only
one name and one or more courses. The name is unique. A course belongs to
only one department, has a unique code and an optional title.

The edge between object sets department and name indicates a one-to-one
relationship. The edge between department and course indicates a one-to-
many relationship. The edge between student and hobby indicates a many-to-
many relationship between student and hobby where hobby is optional.

There is a ternary relationship set among course, student and grade. Each
course, student pair has only one grade. A student has a unique stuNo, a
stuName, an optional address, and zero or more hobbies.

The scheme tree in Figure 2.7(b) represents the hierarchical structure, with
department and name at the root; course with code and title are nested within
department; student is nested within course; and grade is nested within stu-
dent. The student information, stuNo, stuName, address, hobby, forms a sep-
arate scheme tree.

How well do CM hypergraphs and scheme trees support the requirements of
a data model for designing a schema for semistructured data? This data model
represents a conceptual model (in the CM hypergraph) and the hierarchical
structure (in the scheme tree) of the schema. It is not possible to represent an
instance of a document in this data model.

CM hypergraphs can model both binary and n-ary relationships (where
with the cardinality of the object sets taking part in the relationships. Notice

that the hierarchical nesting is not modeled in the CM hypergraph directly.
Since CM hypergraphs do not distinguish between attributes and object sets,
the number of object sets in a CM hypergraph quickly becomes very large and

20

Figure 2.7. A CM Hypergraph and Scheme Tree for the schema in Figure 2.3

the graph very complex. One of the advantages of the ER diagram is that it
is possible to have two levels of representation, one without attributes and one
with all the attributes. The two levels of representation are not possible with
CM hypergraphs, as there is no concept of attribute. Because CM hypergraphs
are unable to represent the hierarchical relationship, it is necessary to represent
it in a separate diagram, the scheme tree.

Scheme trees represent the hierarchical relationships between object sets.
The hierarchical relationships can be modeled directly and n-ary relationships
(where are modeled using more than one scheme tree. Information
about the degree of the relationship is lost.

Participation constraints cannot be represented in the scheme tree. However,
the representation of participation constraints on the binary relationships is
very comprehensive in the CM hypergraph but the meaning of the participation
constraints is ambiguous when representing n-ary (n>2) relationships. As there
is no distinction between attributes and object classes, the interpretation of
“optional” is ambiguous in CM hypergraphs. For example, what is the meaning
of “o” on the edge between course and title? An “o” near course represents
that a course has an optional title. Does it make sense to have an “o” near
title, for a title to have an optional course? It is worse if there is an “o” in a

Data Models for Semistructured Data 21

ternary relationship, such as an “o” near course, on the edge between course
and student. How do we represent that a student is taking a course but does
not have a grade yet?

It is not possible to represent any form of ordering on object sets, for exam-
ple it is not possible to represent that there is an ordering on students within a
course.

2.5 EER and XGrammar
A language and diagram for modeling XML schemas was defined in [Mani

et al., 2001]. The language, called XGrammar, was designed with the aim of
capturing the most important features of the proposed XML schema languages.
The diagram called the Extended Entity Relationship diagram (EER), differs
from other EER diagram notations in that it captures all the concepts that can
be represented in Entity Relationship (ER) diagrams while also capturing the
hierarchical relationship and ordering on element sets.

The hierarchical relationship or element-subelement relationship is repre-
sented using a dummy relationship set labeled “has”. The ordering on elements
is expressed as a solid line between the relationship set and the ordered entity
set. The authors use the term “entity sets” when referring to “element sets”.
Entity sets are represented as rectangles and relationship sets by diamonds on
the edges.

Example 2.7 Consider the EER diagram in Figure 2.8(a) with entity sets De-
partment, Course and Student. Department has a key attribute called name.
Course has a key attribute code, and a single valued attribute title. Student
has a key attribute stuNo, single valued attributes stuName and address, and
a multi-valued attribute hobby. There are two relationship sets with the label
“has”, representing a hierarchical relationship between entity sets Department
and Course, and another between entity sets Course and Student. The latter
has an attribute grade. A department has one or more courses, and a course
belongs to only one department. A course has zero or more students and a
student belongs to one or more courses.

Ordering of entities is represented by a bold line in an EER diagram. The
requirement that students taking a course must occur in a particular order is
represented in Figure 2.9.

The language XGrammar is able to express the hierarchical relationship be-
tween entity sets, distinguish attributes from elements, represent participation
constraints on the children elements, and represent references. An XGram-
mar definition of the schema in Example 2.7 is described in Example 2.8. The
XGrammar language describes the entity sets and the constraints imposed on
them as a 5-tuple {N,T,S,E,A}, where:

1 N is a set of non-terminal symbols, which represent the entity sets.

22

Figure 2.8. An EER diagram and XGrammar definition for Examples 2.7 and 2.8

T is a set of terminal symbols, which represent instances of the entity sets
and attributes.

S is the non terminal symbol representing the document root.

E is a set of production rules describing the relationship between the entity
sets.

A is a set of production rules describing attributes.

2

3

4

5

The production rules in E and A express the constraints of interest. The au-
thors use the notation ~>, and @ to express an empty subelement, a refer-
ence, and an attribute respectively.

Example 2.8 Consider the XGrammar definition in Figure 2.8(b). The set N
contains the names of the entity sets, Department, Course and Student, as
well as an entity set Has. The relationship set “has” between entity sets Course
and Student is modeled as an entity set in the XGrammar definition because it
has an attribute, grade.

Data Models for Semistructured Data 23

Figure 2.9. An EER diagram and XGrammar definition representing ordering on student
within course

Just as in relational data modeling where many-to-many relationships with
an attribute are captured in a separate relation, XGrammar models many-to-
many relationships with an attribute as a separate entity set. The other “has”
relationship set between Department and Course is a one-to-many relationship
and is captured in the nesting of Course within Department. The set T contains
the entities and attributes. S contains the entity set that is the root of the tree.

The set E specifies the relationship sets on the entity sets. The first rule in
E specifies that entity set Department has one or more Courses. Recall the
Department represents the entity set while department represents an entity or
instance of Department. The second rule specifies that and entity belonging to
the entity set Course has zero or more entities of the entity set Has as subele-
ments. The third and fourth rules specify that the entity sets Has and Student
have no children. This is represented by the

As mentioned above, we have included the entity set Has in the XGram-
mar definition to deal with the relationship attribute grade. The constraints
on attributes are described in set A. An @ denotes an attribute. Entity set
Department has an attribute name which is of type string. Entity set Course
has two attributes code, and title which is optional. Entity set Has has at-
tributes studentRef which is a reference to Student denoted by ~>, and grade
which is optional. Entity set Student has attributes stuNo, stuName, address
which is optional, and hobby which is a multi-valued attribute.

How well does the EER and XGrammar support the requirements of a data
model for designing a schema for semistructured data? The EER diagram and
XGrammar serve different purposes and can in turn represent different con-
cepts. It is not possible to represent an instance of an XML document using
EER or XGrammar. In an EER diagram it is not possible to represent which
entity set is the root of the tree. There is a problem with representing the
hierarchical structure of a semistructured schema in the EER diagram. The
relationship set “has” is used to express the hierarchical structure, but this rela-
tionship set has no direction so it is unclear which entity set is the element and
which is the subelement in the relationship set. So the relationship set “has”

24

cannot represent the hierarchical structure directly. As shown in Figure 2.8(a)
there can be more than one “has” relationship types in an EER diagram.

The hierarchical structure can be represented in XGrammar, but like the
DTD, XGrammar represents the hierarchical structure as a binary relationship
only. It is possible to represent n-ary as well as binary relationships in the EER
diagram but because n-ary relationships were not considered in [Mani et al.,
2001], the authors have not considered any implications of these relationships
in the algorithms that they specify. It is possible to represent the participation
constraints of both child and parent entity sets in the EER diagram, but not
in XGrammar. It is possible to show that an attribute is a key or identifying
attribute in the EER diagram but it is not possible to show whether other at-
tributes are mandatory or optional. One way to overcome this problem is to
represent attributes as entity sets but this could lead to many more entity sets
than are really needed. It is not possible to represent identifying attributes in
XGrammar.

Like in ER diagrams, it is possible to represent attributes of relationship sets
in the EER diagram and there is also an extension to represent ordering on el-
ements. However, there is no distinction between attributes of entity sets and
attributes of relationship sets in XGrammar. Also, it is not possible to repre-
sent ordering directly in XGrammar. It is not possible to represent ordering
on attributes in EER diagrams or XGrammar, except to represent ordered at-
tributes as elements. A distinction is made between attributes and elements in
both EER diagrams and XGrammar. The concept of attribute here is the same
as that in ER diagrams which differs from the concept in XML documents, so
some of the attributes in the EER diagram might be modeled as elements in an
XML document.

From the examples and discussion, we can see that EER diagrams are bet-
ter for conceptual modeling while the XGrammar language is more appropriate
for specifying the “implementation” details of the schema. For example in Fig-
ure 2.8, information such as there is a many-to-many relationship set between
entity sets Course and Student is lost in the XGrammar model. The fact
that grade is an attribute of the relationship set between entity sets Course
and Student is also lost. These concepts are modeled using an entity set Has
and a reference, but the reason for modeling these concepts in this way are not
recorded in the XGrammar model.

2.6 AL-DTD and XML Tree
Arenas and Libkin describe a data model that they later use to define a nor-

mal form called XNF [Arenas and Libkin, 2004]. In the data model, they define
languages for describing an XML Tree and a DTD. In this section we will refer
to the DTD defined by Arenas and Libkin as the AL-DTD to avoid confusion.

Data Models for Semistructured Data 25

Figure 2.10. A textual representation of the XML Tree in Figure 2.11

An XML Tree is defined precisely in a textual description which can be
shown diagrammatically as a tree. The internal nodes are labeled with identi-
fiers, and the leaf nodes are labeled with the value of an attribute or element
set.

The textual description is represented as T = (V, lab, ele, att, root) where:

V is the set of node identifiers,

lab is a mapping from the node identifiers to the names of the element sets
and attributes,

ele is a mapping from the node identifiers to a list of node identitiers or a
string,

att is a mapping from the node identifier and attribute name to the value of
the attribute.

1

2

3

4

Example 2.9 Consider the XML Tree in text format in Figure 2.10 and the
diagrammatic representation in Figure 2.11.

In the diagrammatic representation, identifiers are assigned to the internal
nodes of the tree. These identifiers are in turn used in the textual representation

26

Data Models for Semistructured Data 27

of the document instance. V is the set of vertices, or node identifiers. The
labels in the mapping lab correspond to the values of the tags in the original
XML document. These labels include department, course, title, etc. lab
provides the mapping from node identifiers to labels.

The mapping ele maps from a node identifier to either a string value (e.g.
= “Data Structures”) indicating that the node is a leaf node

or a list of node identifiers (e.g. indicating that the node
is a non-leaf node with children and in this case).

The mapping att maps the node id and attribute name to the value of the
attribute. For example, the mapping shows that
node with id has an attribute called name with value “CS”.

One of the deficiencies of the textual representation is that it is difficult to
visualize the data and their relationships. The node identifiers in the diagram-
matic representation and in V in the textual representation are introduced and
bear no relationship to the original XML document. The diagrammatic rep-
resentation alone also has a number of deficiencies. In particular, the labels
of nodes and attribute names are not shown; the relationships captured are bi-
nary relationships; and it is not possible to distinguish between attributes of
elements and attributes of relationships, e.g. stuName and grade are repre-
sented in the same way. Notice that the ordering of the children is significant.

The schema of the XML Tree, represented in an AL-DTD, can be repre-
sented precisely in a language that captures similar semantics to the document
type definition (DTD) language [Bray et al., 2000].

The AL-DTD is represented as D = (E, A, P, R, r) where:

E is a set of element sets,

A is a set of attributes,

P is a mapping from element sets to the children of the element sets, indi-
cating the participation constraints on children,

R is a mapping from element sets to attributes, indicating which element
set the attribute belongs to,

r is the name of the root element set.

1

2

3

4

5

Example 2.10 Consider the AL-DTD in Figure 2.12. The set E contains all
the element sets, such as department, course, title, etc. and the set A con-
tains all the attributes, such as name, code, stuNo. The set contains the
root element set, department. P maps from the element sets to the children of
the element sets, for example course has children title and
Department must have at least one course, represented as course, course*.

28

Figure 2.12. An AL-DTD schema for the XML Tree in Figures 2.10 and 2.11

An element set that has a string value is mapped to S, which corresponds to
PCDATA in the DTD. R which is the mapping from element sets to attributes
shows that element set department has attribute name etc.

How well does the AL-DTD and XML Tree support the requirements of a
data model for designing a schema for semistructured data? This data model
is able to succinctly and precisely represent both the instance and schemas of
XML documents. However, since it is based on XML documents, it has the
same shortcomings as XML. While it handles hierarchical relationships nicely,
it is not possible to represent many-to-many and many-to-one relationships.
It is not possible to distinguish between binary and n-ary relation-
ships and there is also no distinction between attributes of element sets and
attributes of relationships. The AL-DTD does not show identifying attributes,
and because the schema is modeled as a tree it is not possible to model IDREF
or IDREFS from the DTD language directly. The AL-DTD is less expressive
than the DTD language.

2.7 ORA-SS
The ORA-SS data model [Dobbie et al., 2000] has four basic concepts: ob-

ject classes, relationship types, attributes and references, and consists of four
diagrams: the schema diagram, the instance diagram, the functional depen-
dency diagram and the inheritance diagram. Notice that “element sets” are
called “object classes” in the ORA-SS data model, and “relationship sets” are
called “relationship types”.

The ORA-SS instance diagram is like a DOM tree, in that it captures the
instance of a document. However, it is unlike the DOM tree in that it is possi-
ble to distinguish between attributes and object classes. The ORA-SS schema
diagram, which captures the schema information, is like the CM hypergraph,
except that it is semantically richer. The functional dependency diagram cap-
tures functional dependencies that cannot be expressed in the participation con-

Data Models for Semistructured Data 29

straints in the schema diagram, such as those of n-ary relationships, and the
inheritance diagram captures ISA relationships.

Consider the ORA-SS instance diagram in Figure 2.13. An ORA-SS in-
stance diagram has two kinds of nodes, internal and leaf nodes. Internal or
non-leaf nodes are represented as labeled rectangles, and leaf nodes are la-
beled circles that have a value. The rectangles represent objects and the circles
represent attributes and their values. Attributes in the ORA-SS sense are like
attributes in an ER diagram which is not the same as attributes in XML docu-
ments. Attributes in ORA-SS may be represented as elements or attributes in
an XML document. ORA-SS instance diagrams can be used when an XML
document exists but the schema of the document is unknown. Some schema
information can be extracted from the instance diagram while other semantic
information and constraints must be sought from a domain expert. See Chap-
ter 4 for details.

Consider the ORA-SS schema diagram in Figure 2.14. An object class is
represented as a labeled rectangle. A relationship type between object classes
in an ORA-SS schema diagram can be described by name (object class list),
n, p, c, where name denotes the name of the relationship type, object class
list is the list of objects participating in the relationship type, n is an integer
indicating the degree of the relationship type (n=2 indicates binary, n=3 in-
dicates ternary, etc.), p is the participation constraint (the cardinality of the
mapping between object classes) of the parent object class in the relationship
type, and c is the participation constraint of the child object class. The name
is optional. The object class list is included only if the object classes partici-
pating in the relationship type are separated by some other object class(es) not
relevant to the relationship type in the path which includes all participating ob-
ject classes of the relationship type. The participation constraints are defined
using the min:max notation, also used in the EER diagram. The symbols ?, *, +
are shorthand notations and have the same meaning as they have in DTDs. An
edge between two object classes can have more than one such relationship type
label to indicate the different relationship types the object classes participate
in.

Attributes of object class or relationship type are denoted by labeled circles.
Some object classes may have identifiers, which are denoted as filled circles.
An attribute can be mandatory or optional, single-valued or multivalued. All
attributes are assumed to be mandatory and single-valued, unless the circle
contain an ?, which shows that the are single valued and optional, or a + which
shows that they are multivalued and required, or an * which shows they are op-
tional multivalued attributes. Attributes of an object class can be distinguished
from attributes of a relationship type. The former has no label on its incoming
edge while the latter has the name of the relationship type to which it belongs
on its incoming edge.

30

Data Models for Semistructured Data 31

Figure 2.14. An ORA-SS schema diagram for the document in Figure 2.1

Example 2.11 Consider the ORA-SS instance diagram in Figure 2.13. The la-
beled rectangles represent objects, for example, there are objects department,
course and student. The labeled circles represent attributes, for example
there is an attribute code with value “CS1102”, and the attribute title with
value “Data Structure”.

Figure 2.14 show the ORA-SS schema diagram. The rectangles labeled de-
partment, course and student are examples of object classes. Attributes name,
code and stuNo are the identifiers of the object class department, course and
student respectively. The meaning of identifier in the ORA-SS is the same as
the identifier of an entity type in the ER sense, that is, the attribute has a unique
value in the real world. For example, every student has a unique stuNo. Each
of the attributes title, address, hobby and grade are optional. Attribute hobby
is multivalued, and attribute stuName is required.

There are two relationship types, called dc and cs. Relationship type dc rep-
resents a binary relationship between object classes department and course,
and cs represents another binary relationship between course and student. A
department can have one or more courses, and a course belongs to one and
only one department. A course can have zero or more students, and a student
can take 1 or more courses. The label cs on the edge between student and
grade indicates that grade is a single valued attribute of the relationship type
cs. That is, the attribute grade is the attribute of a student in a course. From

32

these constraints, we can derive that

Some of the information in the label is redundant so it is not necessary to
include all the fields. For example the label for relationship type dc can be
shortened to 2,+,1:1, since we do not need to use the name of the relationship
type elsewhere and it is obvious that the relationship type is between object
classes department and course.

How well does the ORA-SS data model support the requirements of a data
model for designing a schema for semistructured data? The hierarchical struc-
ture of the object classes is clearly shown in the ORA-SS schema diagram,
along with participation constraints on parent and children object classes. A
distinction is made between attributes of object classes and attributes of rela-
tionship types. An attribute that belongs to a relationship type has the name of
the relationship type on its incoming edge where an attribute that belongs to
an object class has no label on its incoming edge. Compare for example the
attributes address and grade. Attribute address is an attribute of student where
attribute grade is an attribute of the relationship type cs where the participating
object classes are course and student. In Figure 2.14 we depict only binary
relationships but it is also possible to represent n-ary relationship types
in ORA-SS schema diagrams.

Example 2.12 The ORA-SS schema diagram in Figure 2.15 shows a relation-
ship type between student and course called sc. Attribute grade is an at-
tribute of relationship type sc. The attribute grade models the grade that a
student gains in a course. There is a binary relationship type between course
and tutor called ct, with an attribute hours. The attribute hours models the
hours a tutor spends on a course per week. Finally there is a relationship type
called sct among object classes student, course and tutor. It is a ternary re-
lationship. Attribute feedback, which belongs to relationship type sct, models
the feedback a tutor gets on a course from a student.

It is also possible to depict orderings on attributes or elements. For example
if students are to be ordered within a course, this is depicted by a < in the label,
and if hobbies are ordered by priority this is depicted by a < on the incoming
edge as shown in Figure 2.16.

A more detailed description of the ORA-SS data model in given in Chap-
ter 3.

2.8 Discussion
In this chapter, we have listed the features that are required in XML data

models to support the design of schemas for XML documents. We have de-

Data Models for Semistructured Data 33

Figure 2.15. An ORA-SS schema diagram showing binary and ternary relationships

Figure 2.16. An ORA-SS schema diagram showing ordering of students and hobbies

scribed the major data models that have been proposed for modeling schemas
for semistructured documents. Table 2.2 summarizes the findings of this chap-
ter. In this table, a indicates the data model supports the feature, a × indi-
cates that data model does not support the feature, while a indicates that
the feature is partially supported or the feature is not directly supported but it
is possible to model it.

34

A DTD does not model the instance of the data, and the only relationships
that can be modeled using the DTD are binary relationships in the hierarchi-
cal structure or references. It is possible to indicate the participation of the
children in hierarchical relationships and the participation of the referenced el-
ements. No distinction is made between attributes of elements and attributes
of elements, and there is always an ordering on subelements since they are
represented as a sequence.

A DOM represents an instance of an XML document, so it is not possible to
represent information about the schema other than the hierarchical structure.
A DOM does distinguish between attributes and elements. The OEM again
represents an instance of an XML document, but unlike the DOM it does not
distinguish between attributes and elements. With DataGuides, the hierarchy
of object sets is represented explicitly. An inadequacy of the DataGuide is
its inability to express the degree of n-ary relationships for the hierarchical
semistructured data, which introduces ambiguous data representations.

The S3-graph does not model the instance of an XML document, but cap-
tures the hierarchical structure of semistructured data. It does not provide for
the specification of the identifying attribute of an entity, and does not distin-
guish between attributes of objects and relationships. The S3-graph is not able

Data Models for Semistructured Data 35

to depict the degree of relationships, and cannot capture relationships beyond
the binary one-to-one and one-to-many relationships.

The CM hypergraph and scheme tree data model has no way to represent a
data instance, does not provide a way to model references, does not distinguish
between objects and attributes, has no way of representing ordering, and the
conceptual information and nesting relationships are in two separate diagrams.
Participation constraints and the distinction between attributes of relationships
and attributes of elements can be modeled in CM hypergraphs.

Using the EER and the XGrammar data model it is not possible to represent
a data instance, and the representation of hierarchy in the EER diagram is am-
biguous without other information. While it is possible to represent many of
the other features, it is sometimes necessary to have both the EER represen-
tation and the XGrammar representation to gain a clear understanding of the
exact semantics. For example, if a relationship is modeled using references
in the XGrammar representation then some participation constraint informa-
tion is lost. Also, XGrammar does not distinguish between attributes of object
classes and attributes of relationship types, and XGrammar is unable to repre-
sent the degree of relationship types. Because it is not possible to model all
the constraints in either EER or XGrammar, both representations are required
to model the semantics needed to effectively manage semistructured data.

The data model presented in [Arenas and Libkin, 2004] describes a language
for specifying an instance, (i.e. the XML Tree), a diagram for representing the
instance and a language for specifying the schema (i.e. the AL-DTD). The
specification of the instance, represents the hierarchical structure of the XML
instance, the values of elements and attributes, and the ordering on elements.
The language for specifying the schema captures most of the of the DTD lan-
guage, except ID and IDREF(S). Consequently it is not possible to specify an
n-ary relationship where it is not possible to specify the participation
constraint of a parent element in a relationship, and it is not possible to distin-
guish between attributes of element sets and attributes of relationship types.

In summary, the major advantages of ORA-SS over existing semistructured
data models for designing schemas for semistructured data are its ability to
represent the data instance, distinguish between attributes and object classes,
differentiate between attributes of object classes and attributes of relationship
types, and to express the degree of relationship types and the participation con-
straints on the object classes in the relationship types. Such expressed informa-
tion is important, even crucial for designing “good” semistructured databases,
and defining meaningful semistructured views.

Chapter 3

ORA-SS

The ORA-SS data model has three basic concepts: object classes, relation-
ship types and attributes. Object classes model sets of real world entities. An
object class is related to other object classes through relationship types. At-
tributes are properties, and may belong to an object class or a relationship type.
The ORA-SS data model consists of four diagrams: ORA-SS instance dia-
gram, ORA-SS schema diagram, functional dependency diagram and ORA-SS
inheritance diagram. The instance diagram provides a way to visualize an in-
stance of the data, the schema diagram represents the structure and constraints
on an instance, additional functional dependencies can be represented in the
functional dependency diagram and specialization/generalization relationships
among the object classes are represented in the inheritance diagram.

3.1 ORA-SS Schema Diagram
An ORA-SS schema diagram is a directed graph where each internal node

is an object class, and each leaf node is a complex attribute or an attribute. The
focus of this section is to describe what can be expressed using the ORA-SS
schema diagram. The various notations are summarized in Appendix A.

Object Class
An object class represents a set of entities in the real world, and is similar

to an entity type in an ER diagram, a class in an object-oriented diagram or
the type of an element in the semistructured data model. An object class is
represented by a labeled rectangle. The label shows the name of the object class
(inside the rectangle). The name is mandatory. The attributes are represented
as labeled circles joined to their object class by a directed edge and identifiers
are filled circles. An identifier is a concept borrowed from the object oriented

38

Figure 3.1. Object class student with attributes in an ORA-SS Schema Diagram

model, where an identifier value can identify an object. Both attributes and
identifiers are described in more detail later in this chapter.

An entity type in an ER diagram typically has a name and is characterized by
the set of attributes that belong to each entity. Since semistructured data is less
regular than traditional (structured) data, the object classes are characterized
by a name rather than a set of attributes. The set of attributes associated with
an object class are the attributes that instances of that object class could have.
However, there is no expectation that every instance of an object class should
have a value for each attribute.

Example 3.1 Consider modeling a set of students where each student has a
stuNo, a name and might have an address. This is represented as an object
class in Figure 3.1 by an object class student with identifier stuNo, and at-
tributes name and address. The “?” indicates that the attribute address is
optional.

Relationship Type
Two object classes are connected via a relationship type. A relationship type

in the ORA-SS data model represents a nesting relationship. Each relationship
type has a degree and participation constraints. A relationship type of degree 2
(i.e. a binary relationship type) relates two object classes. One object class is
the parent and the other the child, and we distinguish between the participation
constraint on the parent in the relationship type and the participation constraint
on the child in the relationship type. A relationship type of degree 3 (i.e. a
ternary relationship) is a relationship type among three object classes.

In an ORA-SS schema diagram, a solid labeled directed edge connecting ob-
ject classes represents a relationship type. A relationship type has a label of the
form name(object class list), The label indicates a relation-
ship type with name name, among objects in the object class list of degree

indicates binary, indicates ternary, etc.), where the participation
of the parent has minimum and maximum and the participation of the child
has minimum and maximum The name is optional. The object class list
is included only if the object classes participating in the relationship type are
separated by some other object class(es) not relevant to the relationship type in

ORA-SS 39

the path that contains all the participating object classes. By defining partici-
pation constraints with min:max notation, we are able to represent numerical
constraints. The usual shorthand can also be used to represent the participation
constraints, ? represents 0 : 1 , * represents + represents All
fields in the label are optional. There is no default value for name. The default
degree is 2, default parent participation constraint is and default child
participation constraint is

Example 3.2 The ORA-SS schema diagram in Figure 3.2(a) shows a binary
relationship type, jm, between project and member and a binary relationship
type, mp, between member and publication.

The relationship type between project and member is annotated with the
label jm, 2, +, +, which represents a many-to-many binary relationship type
between project and member, and a total participation constraint on both
object classes. That is, each project has at least one member, and each mem-
ber must participate in at least one project. The relationship type between
member and publication is a many-to-many binary relationship type. How-
ever a member has zero to many publications, and each publication must
belong to at least one member.

Figure 3.2(b) depicts an instance of this schema showing a relationship
type between projects and members, and another between members and
publications, but no relationship type between projects and publications.
This diagram indicates that member has publications pub1, pub2 and
pub3, and works on projects and However, we do not know which
project the publications are associated with. The DataGuide in Figure 3.2(c)
illustrates how these relationships would typically be nested.

Example 3.3 In contrast, the ORA-SS schema diagram in Figure 3.3(a) shows
a ternary relationship type between project, member and publication, rep-
resenting the publications a member has for a particular project. There is a
binary relationship type (named jm) between project and member, and a
relationship type (named jmp) among project, member and publication.

Figure 3.3(b) depicts an instance of this schema, showing a relationship
type between project and member, and another relationship type between the
project and member relationship type and publications. It is clear that pub-
lications pub1 and pub2 are associated with member working on project

while publication pub3 is associated with member working on project
The DataGuide in Figure 3.3(c) illustrates how these relationships would

typically be nested.

Note that the schema diagrams in Figure 3.2(a) and Figure 3.3(a) capture
different semantic information. Figure 3.2(a) captures information about who

40

Figure 3.2. Representing binary relationship types in an ORA-SS Schema Diagram

Figure 3.3. Representing ternary relationship types in an ORA-SS Schema Diagram

works on what project and information about what publications each person

ORA-SS 41

has, while Figure 3.3(a) captures information about who works on what project
and information about what publications each person has for a given project.

This distinction between binary and ternary relationships is important for
interpreting the meaning of the data and necessary because the degree of a re-
lationship will affect the way the data is stored in a repository. If a ternary re-
lationship is stored as two binary relationships then information is lost. Notice
that the DataGuide representations in Figures 3.2(c) and 3.3(c) are the same,
because the DataGuide diagram does not express the degree of a relationship
type. Although the diagram instances in Figure 3.2(b) and Figure 3.3(b) are
different, two XML documents that represent the data instances are exactly the
same. This is because it is not possible to express the degree of a relationship
type in XML.

Example 3.4 Let us consider how the relationship types represented in Fig-
ure 3.2(a) can be stored in a nested relational database. We would create a
relation for each object class and a relation for each relationship type. One
relationship type relation stores the project id and the member staffNo, repre-
senting the relationship type between object classes project and member, and
the other relation stores the member staffNo and the publication pubNo, repre-
senting the relationship type between object classes member and publication.
The relations are:

On the other hand, for the schema represented in Figure 3.3(a), we would
create one relationship type relation that stores the project id, member staffNo
and the publication pubNo representing the relationship type among object
classes project, member and publication. The object class relations would
remain the same as above, and there would be only one relationship type rela-
tion:

As we can see from the examples, the nested relational schema is different
for the different meanings, although the same DataGuide is used to model the
different semantics in the semistructured data model.

42

Figure 3.4. Representing a binary and ternary relationship type in an ORA-SS Schema Dia-
gram

Although the object class list is not usually needed in the relationship type
label, it is needed when the object classes participating in a relationship type
are separated by other object classes not participating in the relationship type
in an ORA-SS schema diagram. The following example demonstrates a case
where the object class list is needed.

Example 3.5 Consider three object classes supplier, project, and part, where
projects belong to suppliers and parts are supplied for projects. We may also
want to represent a relationship type between supplier, and part, particularly if
the relationship type between supplier and part has its own properties. These
relationship types are shown in Figure 3.4.

The relationship type sp is a binary relationship type between supplier and
project. The relationship type spj is a ternary relationship type among sup-
plier, project, and part, and the relationship type sj is a binary relationship
type between supplier and part.

Attribute qty is an attribute of relationship type spj, and attribute price is
an attribute of sj. Attribute qty represents the quantity of parts supplied to a
project by a supplier, and attribute price represents the price of a part from a
supplier.

Just as in traditional data modeling, the concept of identifier is important
when data storage structures are being designed. In traditional data modeling,
the uniqueness of the identifier represents “real world” uniqueness. This con-
cept of uniqueness is different from the uniqueness of an ID attribute in DTDs,
which represents the uniqueness of an attribute within an XML document. For

ORA-SS 43

example, a project has a unique projNo in the real world. However, the
same project (with the same projNo) can be associated with more than one
supplier, and can appear more than once in an XML document. In a DTD,
the projNo cannot be declared as an ID attribute in the project element. In
ORA-SS schema diagrams, the concept of identifier is similar to the meaning
in the object oriented data model.

Identifier Dependency Relationship Type
Further, some object classes may not have unique identifiers. For example,

while a chapter number is unique within a book, it is not a unique identifier
amongst chapters of more than one book, and thus, it cannot be an identifier.
To illustrate this point, consider the case where someone refers to chapter 1.
It is not obvious which chapter 1 they are referring to. However, if they refer
to ISBN 0-07-232206-3, chapter 1, then they uniquely identify a chapter in
a particular book. This concept was identified in XML by [Buneman et al.,
2001b], and is similar to the concepts of weak identifier and weak entity type of
an identifier dependency relationship type in an ER diagram. Some elements,
such as paragraphs within a chapter, have no identifier at all.

Identifier dependency relationship types are represented in ORA-SS schema
diagrams by a diamond with a label IDD. The child in an identifier depen-
dency relationship type is called the dependent object class. The identifying
attribute(s) in the dependent object class forms a weak identifier, and is de-
picted in the ORA-SS schema diagram as an attribute with a line through its
incoming edge.

Example 3.6 In Figure 3.5, the object class book has an identifier isbn, while
object class paragraph has no identifier. Instances of object class chapter
can be identified using the isbn value of the book and the value of the weak
identifier chapter number of the chapter. Object class chapter is a dependent
object class.

Attribute
Attributes represent properties, and can be a property of an object class or

a property of a relationship type. In an ORA-SS diagram, an attribute is a
labeled circle. The label inside the circle shows the cardinality of the attribute.
The cardinality is represented using the symbols ? representing an optional
single valued attribute, + representing a mandatory multi-valued attribute, *
representing an optional multi-valued attribute, and the default is a mandatory
single valued attribute. The label outside the circle is of the form name,

where name is the name of the attribute. The labels F and D denote

44

Figure 3.5. Object classes with no identifier or a weak identifier in an ORA-SS Schema Dia-
gram

the fixed value and default value, and their values are and respectively.
Both are optional.

There is a special name ANY indicating an attribute with unknown structure.
This attribute is needed because of the irregularity of semistructured data, and
can be used when the structure of some parts of the data are not known or are
not of interest.

A filled circle represents an identifier. The concept of identifier is borrowed
from the object oriented model, where an identifier value can identify an ob-
ject. A filled circle with a circle around it represents a candidate identifier.
The attributes participating in a composite identifier or a composite candidate

identifier are represented by filled circles and their incoming edges are con-
nected with a line. A derived attribute is represented by a dashed circle. The
edge between an object class and an attribute can be labeled with name. The
name must be the name of a relationship type, indicating that the attribute is an
attribute of that relationship type. A composite attribute is a tree of attributes.

Example 3.7 Consider the ORA-SS schema diagram in Figure 3.6. The ob-
ject class course has attributes code, title, an attribute whose structure is
unknown, currency and cost. Attribute code is the identifier of course and is
a composite attribute. It is made up of the attributes dept pre fix and number.
The default value of dept pre fix is comp, denoted as D : comp. An attribute
like title is a mandatory single valued attribute so every course is expected
to have a value for title. Attribute cost is an optional single valued attribute

ORA-SS 45

Figure 3.6. Object classes with relationship types and attributes in an ORA-SS Schema Dia-
gram

so not every course is expected to have a value for cost. Attribute currency
has a fixed value, US$, for all instances of course. Attribute ANY can con-
tain anything, it is an attribute whose structure is unknown. There is a binary
relationship type cs between object classes course and student.

The object class student has an identifier student number, a composite
candidate identifier consisting of the attributes first name and last name,
and a multi-valued attribute hobby. The attribute mark belongs to the rela-
tionship type cs between course and student, i.e. it is the mark for a student
in a course. Attribute grade is a derived attribute that belongs to relationship
type cs. This is because the value of grade can be calculated from the student’s
mark in the course.

An identifier is unique amongst the instances of an object class, and rep-
resents “real world” uniqueness, rather than uniqueness amongst a set of in-
stances in a nested relationship. For example, while a chapter number is unique
within a book, it is not a unique identifier amongst all instances of chapter, so
cannot be an identifier. However, student number does uniquely identify stu-
dents, so even when the student object class is nested within the course object
class, attribute student number is still the identifier of object class student.
The notion of an identifier of an object class differs from the ID attribute in the
DTD language, which specifies uniqueness within an XML document.

We advocate that it is necessary to distinguish between attributes of object
classes and attributes of relationship types. The distinction is important when
views on underlying data are defined. More details on this can be found in
Chapter 6.

46

Figure 3.7. Referencing an object class in an ORA-SS Schema Diagram

Reference
A reference usually represents a binary relationship type between two object

classes and is used to reduce redundancy. A similar concept is used in the
object oriented data model. A reference is denoted by a dashed arrow between
a referencing object class and a referenced object class. The referencing and
referenced object classes can have different labels and different attributes and
relationship types.

Example 3.8 Consider the ORA-SS schema in Figure 3.7. The object class
stuRe f1 is a child of object class course, and references object class student
which has detailed information about each student. The relationship type cs
has attribute grade, and there is a ternary relationship type among object
classes course, stuRe f1 and tutor. The participation constraints enforce that
a tutor tutors at least one student in a course to a maximum of many students
in courses, while a student in a course has one and only one tutor. There is
an object class sport club that has identifier name and attribute description.
The relationship type sm between object classes sport club and stuRe f2 has
attribute join date. There is a reference between stuRe f2 and student.

A recursive relationship can easily be modeled using references. There is a
reference connecting the recursing object class to itself.

Example 3.9 The schema in Figure 3.8 shows that the prerequisites of a course
are other courses. In fact in Figure 3.8, there is a constraint that a course can
have 0 to 5 prerequisites, and a prerequisite course can be the prerequisite of
1 or more courses. Object class prerequisite is the referencing object class,
and course is the referenced object class.

ORA-SS 47

Figure 3.8. Example of a recursive relationship in ORA-SS Schema Diagrams

Figure 3.9. Symmetric relationship in an ORA-SS Schema Diagram

Many-to-many relationship types in a tree data structure introduce redun-
dancy, and are not easily modeled. The objective of references is to reduce
such redundancy, as shown in the following example.

Example 3.10 Consider the relationship between courses and students, where
a course has students and a student takes courses. If most queries ask about
students within courses then it would be practical to have only the reference
from stuRef to student. However, if there are also frequent queries about
courses that students take, the more general model has a reference between
stuRef and student, and another between courseRef and course. Since
there is no good reason to nest student within course, or course within student,
this many-to-many relationship type is modeled using references in Figure 3.9.

Notice that both relationship type cs and sc have an attribute grade, repre-
senting a student’s grade within a course. Attribute grade of relationship type
sc is derived from attribute grade of relationship type cs.

Problems, involving the nesting of many-to-many relationships in a hierar-
chical data model, like that illustrated in Example 3.10 were first encountered

48

in the hierarchical database management system IMS of IBM, where IMS pro-
vides physical and virtual pairing to resolve this problem for binary relation-
ship types [Date, 1975]. However, for relationship types of degree where

physical and virtual pairings cannot be used to resolve redundancy
problems properly.

Ordering
Ordering on elements is assumed in XML documents. However, in the real

world, not all entities are ordered and there are different kinds of ordering. We
distinguish between 3 kinds of ordering in the ORA-SS data model to provide
flexibility when modeling the real world:

ordering on instances of an object class in relation to another object class,
e.g., ordering on chapters of a book,

ordering on values of an attribute, e.g. ordering on authors of a book, and

ordering on attributes and object classes of an object class, e.g. ordering on
parts of a book, like preface, table of contents, chapters, appendix.

1

2

3

The first kind of ordering is represented by a “<” in the relationship type
label, the second is represented by a “<” on the edge to the attribute, while
the third is represented by a “<” beside the object class. These symbols are
optional and the default is no ordering.

Example 3.11 Consider the ORA-SS schema diagram in Figure 3.10. The
symbol “<” on the edge between object class book and attribute author in-
dicates that the values of the attribute author are ordered. The symbol “<”
adjacent to object class book indicates that the attributes and object classes of
this object class are ordered i.e. the structure of book is isbn, title, authors,
preface, toc, followed by the object class chapter. The symbol “< ” in the re-
lationship type label for the IDD relationship type indicates that the instances
of object class chapter are ordered. The “<” in the edge between object
classes chapter and attribute paragraph indicates that the values of attribute
paragraph of a chapter are ordered.

When XML documents are stored in a repository, it is important to be able
to represent and enforce as many of the constraints as is practical. If a data
model is being used in the mapping from the XML document to the repository,
then it is important that the data model can also model the constraints, such as
ordering.

ORA-SS 49

Figure 3.10. Ordered object classes, attributes, and attribute values in an ORA-SS Schema
Diagram

Disjunction
A characteristic of semistructured data is that attributes and object classes

are likely to be less homogeneous than in structured data. To allow for this, we
provide for two different kinds of disjunction in the ORA-SS data model:

disjunctive object classes, and

disjunctive attributes.

1

2

A disjunctive relationship is used to represent disjunctive object classes,
such as a student lives in a hostel OR at home, and is represented by a relation-
ship diamond labeled with symbol A disjunctive attribute is represented by
a circle labeled with symbol with edges from this circle to the alternatives.

Example 3.12 Consider the schema diagram in Figure 3.11. A course has
a disjunctive attribute exam venue. Attribute exam venue is a disjunctive
single-valued attribute, and can be a lecture theatre or a laboratory, but
not both. It is denoted by a inside a circle. Relationship sh is a disjunc-
tive relationship, and is denoted by a inside a diamond. It represents the
fact that a student can either live in a hostel or at home. The participation
constraints indicate that an instance of this relationship is mandatory, and a
student must have an address of either a hostel or home.

3.2 ORA-SS Data Instance Diagram
Traditionally, when databases are designed, the schema is modeled using a

conceptual model and the schema of the database is derived from this model.

50

With semistructured data, the focus is more on the instance and the schema is
derived from the instance. The semistructured data instance can be modeled
using an ORA-SS instance diagram.

An ORA-SS instance diagram is a directed graph where each internal node
is an object (or instance of an object class), and each leaf node is an attribute
with value. Each directed edge indicates a relationship between the parent
and child nodes. The objects are represented by rectangles with a label name
inside. The attributes with values are represented by labeled circles. The label
of an attribute has the form name : value where name is the name of the
attribute and value is the value of the attribute.

Example 3.13 Consider Figure 3.12, where department, course and student
represent object instances, and the label “code : CS1102” on the circle states
the name of the attribute is code, and the value of the attribute is CS1102.
An XML document representing the information expressed in the ORA-SS in-
stance diagram in Figure 3.12 is shown in Figure 3.13. The schema of the
instance is represented in the ORA-SS schema diagram in Figure 3.14, with
the corresponding DTD in Figure 3.15.

Figure 3.11. Disjunctive attribute and object classes in an ORA-SS Schema Diagram

ORA-SS 51

52

Figure 3.13. An XML Document for the ORA-SS Instance Diagram in Figure 3.12

3.3 ORA-SS Functional Dependency Diagram
Functional dependencies and multivalued dependencies model real world

constraints, showing that some of the object classes or attributes depend on
other object classes or attributes. There are two kinds of dependency. The first
kind has attributes of object classes and relationship types on the righthand
side of the dependency. This kind is illustrated in Figure 3.14, where:

ORA-SS 53

Figure 3.14. ORA-SS Schema Diagram for document in Figure 3.12

Figure 3.15. An DTD for the ORA-SS Schema Diagram in Figure 3.14

Notice that the DTD in Figure 3.15 cannot fully represent the semantic con-
straints in the ORA-SS schema diagram in Figure 3.14, such as

The second kind of dependency involves object classes that are participating in
a relationship type. In Figure 3.14, there is an example:

This dependency can be derived from the ORA-SS schema diagram but this
kind of dependency cannot always be derived, and needs to be represented in
a separate functional dependency diagram for the relationship type involved.

54

In general, functional dependencies of binary relationship types can be de-
rived from the participation constraints in the ORA-SS schema diagram, but it
may not be possible for n-ary relationship types. Functional depen-
dency diagrams can also be used with ORA-SS schema diagrams to capture
the same information. This information is useful when attempting to identify
redundancy in the repository. However, because functional dependencies of
binary relationship types can be derived from the participation constraints of
the binary relationship types in the ORA-SS schema diagrams, there is no need
to draw functional dependency diagrams for binary relationships.

In functional dependency diagrams the object classes are represented by la-
beled rectangles, the relationship types by diamonds labeled only with the re-
lationship type name, and the edges carry the cardinality of the object classes.
Each edge label has where is the number of functional depen-
dencies among the object classes. The on each edge emanating from a
relationship type relate to each other and represent one functional dependency,
as do the etc. Each represents the object classes cardinality in that
functional dependency, and is denoted as 1, or –.

Consider a ternary relationship among three object classes, A, B and C. If
the are 1 respectively, then we can derive the functional dependency

In fact, an object class with cardinality 1 will appear on the right
hand side of the functional dependency, except in the case where all object
classes have cardinality 1. In this case, any of the object classes can appear on
the right hand side of the functional dependency. A hyphen (“-”) indicates that
the object class does not take part in the dependency.

Example 3.14 The functional dependency diagram in Figure 3.16 enhances
the information in Figure 3.7. Suppose that a tutor can teach many tutorials
in one course, each student in a course has one tutor, and a tutor can teach
tutorials in only one course. The functional dependencies that model these
constraints are:

The first functional dependency can be derived from Figure 3.7, but the sec-
ond cannot. The functional dependencies among the object classes student,
course, and tutor are shown on the edges in Figure 3.16. The edge from
student has the label the edge from course has the label and the
edge from tutor has the label Consider the first character in each label,

and 1 respectively, they indicate that for each student and each course,
there is at most one tutor, and from this we can derive the functional depen-

ORA-SS 55

dency:

Consider the second character in each label, –, 1, and respectively, they in-
dicate that object class student is not involved in the functional dependency,
and for each tutor there is at most one course. From this we can derive the
functional dependency:

Figure 3.16. Functional dependency diagram enhancing the information in Figure 3.7

There are two advantages in having separate functional dependency dia-
grams: the functional dependency diagram may enhance the semantic informa-
tion captured in an ORA-SS schema diagram, and some semantic information
that can be expressed in an ORA-SS schema diagram can be represented in a
functional dependency diagram to separate the concepts.

3.4 ORA-SS Inheritance Hierarchy Diagram
Inheritance is one of the important features of the object oriented model

allowing us to represent common properties of object classes. When an ob-
ject class is a subclass of another object class then will inherit the
properties of For example, an inheritance hierarchy can be used to show
that student is a subclass of person. Such subclass/superclass relationships are
represented in an inheritance hierarchy (class hierarchy) diagram in the object
oriented model.

The ORA-SS data model also has a similar inheritance hierarchy diagram.
The inheritance hierarchy is helpful when organizing data storage, because
there are various standard methods of efficiently storing objects that are gen-
eralizations/specializations of other objects , like in the object oriented model.
Although the methods may not apply directly for semistructured data, we be-
lieve they can be modified to fit.

56

Figure 3.17. ORA-SS Schema Diagram and Inheritance Diagram

ORA-SS 57

Example 3.15 Consider the ORA-SS schema diagram in Figure 3.17(a). The
object classes student, faculty and tutor all have the attributes ssn and
name, and that object classes student and tutor both have the attribute
student number. The inheritance information is drawn on a separate in-
heritance diagram. The inheritance information for the object classes in Fig-
ure 3.17(a) is recorded in the inheritance diagram in Figure 3.17(b), tutor is a
subclass of student and it inherits attributes ssn, name and student number
from student which in turn inherits from person. Object classes student and
faculty both inherit ssn and name from person. Attribute student number
is the identifier of student, and tutor, and staf f number is the identifier of
faculty. Attribute ssn is their candidate identifier. Notice that rather than
replace Figure 3.17(a), Figure 3.17(b) enhances it.

In fact one object class may be a subclass of two or more superclasses.
For such multiple inheritance cases, conflicts may occur where an object class
could inherit the same property name from more than one superclass. This is
called a multiple inheritance conflict. Methods to describe such conflicts are
described in [Ling and Teo, 1993].

3.5 Discussion
The ORA-SS data model is designed specifically for modeling semistructued

data. The model consists of four diagrams:

ORA-SS schema diagram,

ORA-SS instance diagram,

ORA-SS functional dependency diagram, and

ORA-SS inheritance hierarchy diagram.

1

2

3

4

In the ORA-SS data model there is a clear distinction between object classes
and attributes, which are modeled as rectangles and circles respectively in each
of the four diagrams. The major strengths of the ORA-SS data model are that
it can model concepts central to the semistructured data model, such as ref-
erences, ordering on object classes and attributes, and document instances, as
well as concepts that have proven important in traditional data modeling, such
as binary and n-ary relationships, participation constraints on all object
classes participating in a relationship type, the inheritance hierarchy between
object classes, and the ability to distinguish between attributes of relationship
types and attributes of object classes.

Many of the other data models proposed to model semistructured data are
based on the DTD language, and as a consequence are unable to model some
of the concepts that have been identified as important for modeling data.

Chapter 4

SCHEMA EXTRACTION

Unlike data stored in traditional relational or object-oriented databases, semistruc-
tured data does not have a fixed schema that is known in advance and that can
be stored separately from the data. In fact, the structure of semistructured data
is irregular, unknown, and changes often [Suciu, 1998].

The lack of external schema information renders the storage, indexing, and
querying of semistructured data inefficient, or even impossible. This leads to
the development of methods such as DataGuide [Goldman and Widom, 1997]
to extract the schema from semistructured data. The focus of these techniques
is to extract the hierarchy structure of semistructured data. In contrast, ORA-
SS is able to capture important semantic information such as objects classes,
relationship types, attributes, degree of relationship types, participation con-
straints of the object classes in the relationship types. Further, ORA-SS is able
to distinguish between attributes of object classes and attributes of relation-
ship types. The ability to extract these semantics from the underlying data will
greatly facilitate the various stages of database design and usage.

Consider the attributes stuName and grade located below the object class
student in the ORA-SS schema in Figure 4.1. The attribute stuName is an
attribute of the object class student while the attribute grade belongs to the re-
lationship type cs which involves the object classes course and student. There-
fore, instead of simply storing grade with the attributes of student, we should
store grade together with the identifiers of the object classes student and course.

Such semantic information also alerts us to the fact that any view containing
only course and grade information will not be meaningful because we should
not omit the student information when considering the attribute grade.

In the rest of the chapter, we will present a set of schema extraction rules and
a method to extract semantically rich ORA-SS schemas from XML documents.

60

Figure 4.1. Example ORA-SS schema

We will illustrate the schema extraction algorithm with an example and finally
compare the proposed approach with existing schema extraction methods.

4.1 Basic Extraction Rules
Before we can extract the schema from an XML document, we must have

some knowledge of the structure and syntax of the document. We propose three
rules that are based on the XML syntax to guide our schema extraction process.

Rule E1. The XML document root element is considered as an unique entry
into the XML schema. A non-root XML element is classified as

an object if it has at least one attribute.

a simple attribute if it has only text content without attributes or subele-
ments.

a composite attribute if it comprises of multiple subelements whose values
are text.

1

2

3

A simple or composite attribute is single-valued if the XML element is not
repeated under its parent XML element, otherwise, it is a multivalued at-
tribute.

This rule can be used to differentiate objects and attributes when they are
both expressed by XML elements. Consider the following segment of XML
document:

Schema Extraction 61

VCD is an object since it contains attributes and subelements, while price
and quantity are simple single-valued attributes since they only have text con-
tent without any attribute or subelement. The element actor is a simple multi-
valued attribute as it occurs multiple times under the same parent VCD element
in the XML document. The element features is a composite attribute consisting
of the attributes media and format.

Rule E1 will greatly reduce the number of XML elements that will be con-
sidered as objects. This in turn helps to simplify the schema extraction process.

Rule E2. XML elements permit a mixture of text and elements. We convert
the text segment into a subelement by adding some pseudo tag.

For example, although the following segment is legal in XML, it cannot be
captured in semistructured data models.

However, if we add a pseudo tag “title” for the text segment, then the above
segment can be converted to

Rule E3. The attributes of XML elements may be single-valued attributes,
identifiers of object classes or IDREF(s). Attributes that are written as subele-

62

ments may be attributes of object classes or attributes of relationship types.

XML is ambiguous in the usage of attributes or subelements. One can use
the attributes of an XML element or the subelements of an XML element to
express the properties of an object class. Rule E3 allows us to determine the
attributes of object classes.

For example, in the following XML segment, it is clear that stuName and
age are attributes of the object class student, while grade may be either an
attribute of student, or an attribute of a relationship type involving the object
classes course and student.

Note that Rule E1, E2, and E3 are heuristic rules to facilitate the schema
extraction process. Further, it is easy to convert XML documents to conform
to these rules.

4.2 Schema Extraction Algorithm
Based on the above three rules, we are now ready to introduce an ORA-SS

schema extraction algorithm. There are two main steps:

Generate an initial rough ORA-SS schema structure from the XML docu-
ment.

Refine the rough ORA-SS schema structure by deriving some semantic in-
formation from the underlying data.

1

2

The refinement of the schema structure may require user verification. This
is because, without user input, it is impossible for the algorithm to derive rela-
tionship types and their properties such as degree, and participation constraints.
It is also not trivial to figure out whether an attribute belongs to an object class
or a relationship type. Such information is not available explicitly in the XML
documents. However, the algorithm can look for conflicts in the data instances
and deduce information such as an attribute cannot be an identifier of an object
class.

The final ORA-SS schema will capture the identifiers of object classes, the
degrees and participation constraints of relationship types, and information

Schema Extraction 63

such as whether an attribute belongs to an object class or a relationship type,
and whether an attribute is an IDREF(s) to some object class.

The following gives an outline of the schema extraction algorithm.

Algorithm Extract Schema

Step 1. Generate an initial rough ORA-SS schema structure.

Use Rule E2 to convert XML elements that has text mixed with
subelements.

(a)

(b) Use Rule El to identify XML elements that denote object
classes and attributes such as multivalued attributes,

composite attributes, etc.

Step 2. Refine the rough ORA-SS schema structure with semantic
information derived from the data and/or user.

(a) Create a table for each object class, where the columns consist
of the attributes of the object class, and rows are the object
instances.

Determine the identifier for each object class.

Determine whether an attribute is an IDREF(s) to some object
class.

(b)

(c)

Use Rule E3 to determine whether an attribute is an object
attribute.

(d)

Discover relationship types, their degree, participation(e)
constraints, and attributes.

Create a table for each relationship type.
end

We will now discuss the details of the extraction algorithm.

Step 1. Generate Initial Schema.

Step 1 of the schema extraction algorithm first utilizes Rule E2 to convert
a text segment into a subelement. Next, Rule E1 is used to identify the XML
elements that depict object classes and attributes. Note that the root element
in the XML document is not extracted as an object class since its role is to
identify the XML document.

64

Step 2. Refine Schema.

(a) Create tables for object classes.

The algorithm creates a table for each object class, where the table name and
the object class name are the same as the XML element tag name. The columns
of the table consist of the attributes of the object class, and rows are the object
instances. For a start, all the attributes of the XML element are considered as
the object class’s attributes. However, we add a mark “?” for attributes which
originate from XML subelements, since these may possibly be relationship
attributes.

Single-valued composite attributes are represented by their component at-
tributes. A simple multivalued attribute such as X, which has been identified
by Rule El, is denoted as X * (?) . The value of this column for a tuple is the
set of subelement X values under the parent element (i.e., an element which
represents an identifier of the object class).

Similarly, multiple composite attributes are represented as a nested table in
the object class relation with all the component attributes as the attributes of
the nested table.

(b) Determine identifier of object classes.

In order to determine the identifier of each object class, the algorithm will
analyze the single-valued attribute values of each object class.

A single-valued attribute is a possible object class identifier if each of its
attribute values determines a unique value for the other attributes which have
not been marked with a “?” in the object class table.

The user will be asked to verify the identifier of the object class. We observe
that the identifier is typically the first attribute in the XML element attribute
list. Note that attributes that contain null values cannot be an identifier.

(c) Determine IDREF(S).

The algorithm will also determine whether an attribute is a potential IDREF(S)
to some object class. An IDREF consists of only one value, while an IDREFS
comprises of values that are separated by blanks. Since the identifier of an ob-
ject class cannot be also an IDREF to other object class, the algorithm will an-
alyze the non-identifier single-valued attribute of each object class, and check
whether all its values appear as identifier values of some object class.

Further, if the algorithm finds blank characters in an attribute value, then it
will tokenize the value to become a set of values, using the blank as the sep-
arator. If all the tokenized values correspond to the values of identifier value

Schema Extraction 65

of some object class, then this attribute is a potential IDREFS. Note that the
same object class can be involved, in which case, this IDEREF(S) represents
a recursive relationship type. The algorithm will seek user verification before
setting the attribute to be an IDREFS to that object class. In this way, the ref-
erence will be restricted to a certain object class, which is more meaningful in
real world.

(d) Determine attributes of object classes.

Next, we want to examine whether an attribute belongs to an object class. From
Rule E3, attributes that originate from the attributes of an XML element are
definitely attributes of an object class. However, attributes that originate from
XML subelements can be either an attribute of an object class or a relationship
type.

The algorithm checks whether the values of a single-valued attribute or sets
of values of a multivalued attribute that originate from XML subelements can
be determined by the identifier values of the object class. If yes, then the user is
asked to verify that the attribute is indeed an object class attribute. Otherwise,
the attribute is not an attribute of the object class and the corresponding column
will be removed from the object class’s table. Any resulting identical rows in
the object table will be merged. The column will be subsequently added to the
appropriate relationship table.

(e) Determine relationship types and their properties.

A relationship type exists between the object classes that occurs in a path from
the root to leaf in the initial rough schema. Hence, for each root-to-leaf path
in the initial schema, we create a relationship type table that comprises of the
identifiers of the object classes that occur in the path. Further, if the lowest
object class in the path has attributes that have not been identified as object
class attributes, and are still marked with a “?”, then these attributes are also
inserted into the relationship type table. Note that composite and multivalued
attributes are handled similarly as in the object tables.

Additionally, we create a relationship type table for each remaining attribute
that has not been identified as an object class attribute, and is still marked with
a “?”. The columns of such tables consist of the attribute, and the identifiers of
object classes from the root to the object class which the attribute is connected
to.

Next, the algorithm tries to determine the minimal possible degree of each
relationship type. The schema tree is traversed in a bottom-up manner to check
whether a relationship type can be a binary one. This is achieved by examining
the values of the last two objects’ identifiers. If both identifiers have the same

66

values, but differ from the relationship attribute value (or set of the relationship
attribute values if it is a multivalued attribute), then this relationship type is not
a binary relationship.

Otherwise, the algorithm checks whether the relationship type is ternary,
quadruple, etc. This approach enables us to find the minimal possible degree
of the relationship type based on the current set of data. Note that we will still
seek user verification, who is allowed to set a higher degree for the relationship
type. The user will also be asked to name each relationship type.

After determining the degree of each relationship type, the algorithm will
update the relationship table accordingly. The identifier columns of object
classes which do not participate in the relationship type will be deleted, and any
resulting identical rows will be merged. Further, if two or more relationship
attributes belong to the same relationship type, they will be merged into the
same relationship table.

For each relationship table, the algorithm will count the number of identifier
values and generate the minimal possible range of participation constraints,
according to the data in the corresponding relationship table. Again, the user
can override and set the participation constraints to be at a wider range, e.g.
2:5 can be set to 1:10, or 1:n, or *, +, etc.

The algorithm will also check that the final ORA-SS schema obtained is
consistent with the XML document.

4.3 Example
We use the following XML document to illustrate how the schema extrac-

tion algorithm works.

Schema Extraction 67

68

Step 1. Generate Initial Schema.

The algorithm first uses Rule E1 to determine the object classes course
student, tutor and lecturer together with their attributes and subelements. An
initial rough ORA-SS schema tree as shown in Figure 4.2 is obtained. Note
that the root element of the XML document, that is, enrollment is not mapped
to an object class since it is just an identifier of the XML document.

The symbol “?” on the edge between an object and an attribute indicates
that we have yet to determine whether the attribute is an object attribute or a
relationship attribute.

Step 2. Refine Initial Schema.

(a) Create tables for object classes.

Next, the algorithm will refine the initial schema structure with the semantic
information obtained from the underlying XML document. User verification
is needed at this step.

The algorithm will create a table for each object class. Table 4.1 shows the
tables for all the object classes course, lecturer, student and tutor. These tables
are populated with data from the XML document. The values of each XML
element are mapped to the corresponding column in the table.

Schema Extraction 69

Figure 4.2. Initial ORA-SS schema structure after Step 1

(b) Determine identifiers of object classes.

Next, the algorithm will analyze the instances in the object class tables to
determine the identifier for the object classes. We can use any data mining
technique to mine possible functional dependencies among the attributes in the
object tables. Attributes that are marked with “?” are excluded here.

From the instances in the object class course table (Table 4.1), we have the
functional dependencies

This implies that both code and title are candidate keys of course. Since
code is the first attribute, the algorithm will first ask the user if code is the
identifier of the object class course. If it is not, then the algorithm will proceed
to ask the user whether title is the identifier of course.

For the object class lecturer, we have the functional dependency

Thus, the algorithm will ask the user to verify that staffNo is the identifier
of the object class lecturer.

From the instances in the object class student, we have the functional de-
pendency

70

The user is asked whether stuNo is the identifier of the object class student.
If the answer is affirmative, then stuNo is set to be the identifier of student.
Similarly, we have staffNo as an identifier of tutor.

(c) Determine IDREF(S).

The extraction algorithm tries to check whether some attribute is an IDREF
or IDREFS to some object class. Since all the values of the attribute teaching,

Schema Extraction 71

that is, CS1102 and CS2104 after tokenization, form a subset of the values of
the object identifier / candidate key code of the object class course, it is highly
likely that teaching is an IDREF to the object class course. This observation is
highlighted to the user who confirms that teaching is an IDREF to the object
class course.

(d) Determine attributes of object classes.

This step examines whether the attributes that are marked with “?” are at-
tributes of object classes. Since each student in Table 4.1 has a unique set of
hobby values, the user is asked whether hobby is a multivalued attribute of
student. If it is, then we mark the attribute hobby with an “*”.

The functional dependency

does not hold because student stu123 has two grade values A and B. Therefore,
grade is not an attribute of the student object class.

Similarly, the attribute feedback is also not an object class attribute.

72

Since grade and feedback are not object class attributes, they will be re-
moved from the student table and the tutor table respectively. Table 4.2 shows
the updated tables of the various object classes.

(e) Determine relationship types and their attributes.

Finally, the algorithm determines the various relationship types that exist in
the XML document and tries to obtain the minimal possible degrees of these
relationships types.

For each root-to-leaf path in the ORA-SS schema, the algorithm creates a
relationship table comprising of the identifiers of the object classes that oc-
cur in the path (see Table 4.3). Note that the remaining attributes grade and
feedback that are still marked with “?” are placed in the relationship type table
cst.

From the instances in the XML document, we find that each grade value
is unique for each pair of (code, stuNo) value; and that each feedback value is
unique for each pair of (code, stuNo, staffNo) value. These findings are verified
with the user.

Since grade is an attribute of the relationship type involving course and
student, we create another relationship table called cs involving code, stuNo
and grade. The attribute grade is removed from the table cst. Table 4.4 shows
the final set of relationship type tables obtained.

Schema Extraction 73

Based on the data in Table 4.4, the minimal possible parent participation
constraint and child participation constraint of the relationship type cs could
be 3:4 and 1:2 respectively, that is, 3-4 students can be enrolled in a course,
and a student can take 1-2 courses.

Similarly, the minimal possible parent (student) participation constraint and
child (tutor) participation constraint of relationship type cst could be 1:1 and
2:2 respectively, For the relationship type cs, the user is allowed to change the
the parent participation constraint to 3:n, where indicates that the maximum
occurrences is infinitely many.

The user can also change the child participation constraint to 1:6, that is,
a student can take a maximum of 6 courses. The new constraints are super
ranges of that discovered by the system.

Figure 4.3 shows the final ORA-SS schema tree extracted from our example
XML document. Note that the system should verify that the final ORA-SS
schema tree is consistent with the original XML document.

74

Figure 4.4. DataGuide extracted from sample XML document

Researchers have proposed various methods to extract semistructured data
schema. These include DataGuide [Goldman and Widom, 1997], and approxi-
mate graph schema [Wang et al., 2000]. Figure 4.4 shows the DataGuide that is
extracted from our example XML document. We observe that the DataGuide is
similar to the initial ORA-SS schema tree obtained in Step 1 of the extraction
algorithm.

It is clear that DataGuide and a set of data path expressions only discover
the hierarchy of the semistructured data. There is no knowledge of object
classes and their identifiers, relationship types, attributes of object classes and
relationship types, participation constraints, etc. These models are not able
to distinguish between the different semantics of attributes such as hobby and
grade. Both of these attributes are considered as subelements of the object

Figure 4.3. Final ORA-SS schema obtained after Step 2

4.4 Discussion

Schema Extraction 75

class student although grade is a relationship attribute. Thus, the usage of
these schemas is quite limited.

Compared to existing approaches which extract the structural information
of XML documents, our extraction algorithm carries out additional checking
and analysis of the XML document to derive semantic information.

Database designers will be aware that stuNo is the identifier of object class
student; attribute grade belongs to a binary relationship type between course
and student; teaching is an IDREFS attribute referencing to object class course;
etc Such semantic information will lead to higher quality schemas, and fa-
cilitate all levels of database design, implementation and usage. For exam-
ple, [Chen et al., 2002] gives an algorithm for designing valid XML views
using ORA-SS data model; and [Mo and Ling, 2002] gives an algorithm to
map ORA-SS schema to object-relational database, which can be used to store
XML data efficiently. The set of tables obtained for the object-relational database
is exactly the same as the final object class tables and relationship type tables
(Tables 4.2 and 4.4). Details will be discussed in Chapter 7.

4.5 Summary
In this chapter, we have discussed the importance of a schema for semistruc-

tured data. We have described an algorithm to extract ORA-SS schema from
XML documents. First, the algorithm generates an initial ORA-SS schema
which contains structural information, and differentiates objects from attributes,
and single-valued attributes from multivalued attributes. Next, the algorithm
tries to infer semantic information such as whether an attribute which appears
as a subelement in the XML document belongs to an object class or a rela-
tionship type, the keys of object classes, the IDREF(S) attributes, and degrees
and participation constraints of relationship types, etc. User inputs are needed
in this step to verify the various semantics discovered. We have demonstrated
that the ability to extract a semantically rich schema from XML documents is
useful and important in database design, implementation and usage.

For future work, it would be useful to extend the extraction algorithm to
support additional features in the ORA-SS schema. For example, the ORA-SS
schema has a concept of “ANY” attribute, which is used to capture infrequently
used attributes. ORA-SS also supports ordering on instances of an object class,
values of an attribute and set of attributes, and the inheritance relationship. Fur-
ther, if an XML document is updated, the extract ORA-SS schema should also
be modified to reflect the changes in the underlying data. It will be important
to develop an efficient incremental method to maintain the extracted schema.

Chapter 5

NORMALIZATION

Reducing data redundancy is an important step in relational database design.
Designers reduce data redundancy by normalizing the database schema to one
of the normal forms (e.g. 2NF, 3NF, BCNF, 4NF etc.) using constraints on the
attributes in the schema. Normalization of relational databases is recognized
in the research community where it has been widely researched, and also in
industry where it is regarded as a useful technique. In contrast, there has been
limited research on normalization of semistructured data [Arenas and Libkin,
2004; Embley and Mok, 2001; Lee et al., 1999; Mani et al., 2001; Wu et al.,
2001a].

The interest in storing semistructured data in repositories has increased with
the increased use and complexity of semistructured data. Semistructured data
can be stored in a native XML database, an XML enabled database, or a more
traditional database such as a nested relational or relational database. Current
research that maps semistructured data to a traditional database [Deutsch et al.,
1999; Florescu and Kossmann, 1999; Shanmugasundaram et al., 1999] ignores
the detection of redundancy, although, some of the same kinds of anomalies
that arise in relational databases can arise in repositories that store semistruc-
tured data. For example, update, insertion and deletion anomalies exist in
repositories that store semistructured data when information is duplicated.

In this chapter, we define a normal form for ORA-SS schema diagrams
(called NF ORA-SS schema diagram) which is based on a normal form for
nested relations, and describe an algorithm that maps an ORA-SS schema di-
agram into an NF ORA-SS schema diagram. Section 5.1 gives a example to
highlight the need for normalization in semistructured data model. Section 5.2
reviews definitions from [Ling and Yan, 1994]. In Section 5.3 we define a
normal form for ORA-SS schema diagrams and in Section 5.4 we describe an

78

Figure 5.1. Example XML document with redundant information

algorithm that maps an ORA-SS schema diagram to an NF ORA-SS schema
diagram.

5.1 Motivating Example
The following example demonstrates how redundancy can occur in semistruc-

tured data and highlights the need for normalization.

Example 5.1 Consider the XML document in Figure 5.1 that contains infor-
mation about courses in a department and the students who take the courses.
In this document, there are two courses (with code CS1102 and CS2104) and
two students (with stuNo stu123 and stu125). The details of the students, such
as stuName, address and hobby, are repeated for each course the student takes.

This duplication of information causes a number of problems. For example,
if a student changes their address, it must be updated everywhere the address
is stored, that is it must be updated in every course the student takes. If a new
course is inserted and student stu125 enrolls in that course then the details of

Normalization 79

Figure 5.2. An ORA-SS schema diagram for document in Figure 5.1

this student must be entered again, correctly. If a student is enrolled in only
one course and the student withdraws from the course, then the details of the
student are lost. Duplication of data is likely to lead to inconsistencies when
data is inserted, updated or deleted, without checking the existing data.

The ORA-SS schema diagram for the document in Figure 5.1 is shown in
Figure 5.2. Recall that the root of the XML document is not copied to the ORA-
SS schema diagram. Any document that is valid with respect to this schema is
likely to contain redundant data which leads to the problems described above.

We would like to define a schema that represents the same constraints, but
does not exhibit the same redundancy in valid documents. Such a schema
is shown in Figure 5.3. A reference is created between the new object class
stuRef and the object class student. The attribute of relationship type cs,
grade, is connected to the object class stuRef.

Of course, an ORA-SS schema cannot be used directly by a semistructured
database. Most semistructured databases support either DTD or XMLSchema.
We show a DTD representation of Figure 5.3 in Figure 5.4. The data in the
XML document in Figure 5.1 must be transformed to match the structure of
the schema in Figure 5.4. The transformed XML document is shown in Fig-
ure 5.5. In the transformed XML document the information about students,
namely stuName, address and hobby, are stored only once.

As noted previously the detection of redundant data has been researched
in other data models, and algorithms have been described to design schemas
that eliminate the redundant data. The most well understood research is in the
area of relational databases, where a series of database normal forms such as
3NF, 4NF and 5NF, have been proposed to determine whether a set of relations

80

Figure 5.3. An ORA-SS schema diagram, where valid documents do not contain redundant
information

Figure 5.4. A DTD for the schema diagram in Figure 5.3

is a good design for a given database. A common way to design relational
databases is to model the requirements using ER diagrams. In order to combine
requirements modeling and normalization, [Ling, 1985] proposed a normal
form for ER diagrams, which ensured that all the relations mapped from ER
diagrams are in a normal form, such as in 3NF or 5NF.

The concept of normalization has been extended to the nested relational data
model, where normal forms such as NNF (Nested Normal Form) [Ozsoyoglu
and Yuan, 1987] and NF-NR (Normal Form for Nested Relation) [Ling and
Yan, 1994] have been proposed to guarantee good properties for the underlying
nested relational databases.

Normalization 81

Figure 5.5. Example XML document without redundant information

We observe that the ORA-SS data model is similar to the nested relational
data model in that they both have a tree-like structure and allow nested rela-
tions or multiple occurrences of objects. Hence, starting from the root of a
given ORA-SS schema diagram D, we can easily construct a nested relation
R, which has the single valued attributes of D’s root object class as its atomic
attributes, and the multivalued attributes and composite attributes as well as the
child object classes (including all its child object classes that have disjunctive
relationships) of D’s root object class as its nested relations. For example, the
nested relation for the ORA-SS schema diagram in Figure 5.2 is

82

The root object class department is the name of the nested relation. The
single valued attribute name is an attribute of relation department. The object
class course becomes a level 1 nested relation, nested within department,
with attributes code and title. The object class student is a level 2 nested
relation, nested within course. The nested relation student has attributes
stuNo, stuName, address, grade, and a nested relation hobby (hobby)* which
we express in its short form, hobby*. The “*” indicates that the relation is re-
peating, for example a student has many hobbies, a course has many students,
and a department has many courses. We can construct a set of nested rela-
tions for an ORA-SS schema diagram that consists of several separated tree-
structured components (each starting from different roots and perhaps related
to others through reference semantics). As an illustration, the corresponding
nested relations for the ORA-SS schema diagram in Figure 5.3 is

While the tree structured data models, including ORA-SS, nested relations
and OEM, can represent hierarchical data (or 1-to-many relationships) in a
direct and natural way, they have problems representing many-to-many rela-
tionships. In particular, duplication of data occurs when many-to-many rela-
tionships or relationships involving more than two participating object classes
are represented.

The update anomalies in XML documents and the hierarchical representa-
tion of the data in XML documents motivates the need for defining a normal
form ORA-SS schema diagram. The correspondences between the ORA-SS
data model and the nested relational data model suggest that we can say an
ORA-SS schema diagram is in a normal form if its corresponding set of nested
relations is in normal form for the set of nested relations (NF-NR), as defined
in [Ling, 1989; Ling and Yan, 1994]. The goal is that XML documents that
conform to a DTD or XML Schema generated from a normal form ORA-SS
schema diagram have no redundancy and no undesirable update anomalies.

5.2 Background
The definition for a normal form ORA-SS schema diagram is based on the

definition of NF-NR for nested relations, which is described in [Ling and Yan,
1994]. We start by introducing definitions that are needed in the following
sections. The definition of NF-NR for nested relations is based on the concepts
of extended functional dependency (EFD) and the level of a relation.

An extended functional dependency (EFD) is like a functional dependency
except that it can also describe a constraint between a single-valued attribute
and a nested relation.

Normalization 83

For example, the extended functional dependency

represents the constraint, whenever two tuples agree on the value of all at-
tributes in stuNo, they also agree on the value of all attributes in hobby. An ex-
tended functional dependency that involves only single valued attributes maps
to a functional dependency.

For example,

An extended functional dependency where a single valued attribute determines
a nested relation maps to a multivalued dependency, so the extended functional
dependency

We extend the term transitively dependent to apply to nested relations. If there
is a relation and and then we say that is transi-
tively dependent on

The definition of NF-NR also refers to the concept of a level of a nested
relation in a nested relation. The level of a nested relation that is not nested
within another relation is zero. The level of a nested relation is 1 greater than
the level of the relation it is nested within.

Example 5.2 Consider the nested relation

From the definition above, we have:

We are now able to introduce the definition for normal form for nested rela-
tions (NF-NR) which we use in the following section when defining NF ORA-
SS schema diagrams. In the following NF-NR definition, we use the notation

84

to denote the key of relation R, and ATTR(R) to denote the attributes of
R.

Definition 5.1 A nested relation R with level(R) = 0 is in normal form for
nested relation (NF-NR) iff:

R has at least one key.

All the single valued attributes of R form a 3NF relation with all keys of R
as its keys.

If there is no nested relation in R and all the attributes of R form the key of
R, then R is also in 4NF.

For each nested relation of R, and any key K of R, the fallowing holds:

1

2

3

4

there exists no A, such that

is not transitively dependent on K.

(a)

(b)

For each nested relation of R, all the attributes of and form a
nested relation in NF-NR.

For any nested relation of R, or

5

6

The intuition of the definition for NF-NR for nested relations depends on a
number of conditions. A nested relation is in NF-NR if its single valued at-
tributes are in 3NF and 4NF. None of the attributes of the nested relations have
a multivalued or transitive dependency on the key of the relation. A nested re-
lation formed from the attributes of a nested relation and the key of the ancestor
relations must be in NF-NR. Finally either the key of the relation and key of
the nested relation are disjoint, or the key of the relation must be a subset of
the key of the nested relation.

Example 5.3 In this example, we examine two nested relations. Let us first
consider the following employee nested relation and the associated functional
dependencies:

We consider each of the conditions in the definition of NF-NR in turn.

The nested relation emp has at least one key, emp#.

The relation emp(emp#, name, address) is in 3NF.

1

2

Normalization 85

3

4

There are nested relations in emp.

We first consider the nested relation child. There are no attributes in child
that are multivalue determined by the emp#, and child is not transitively
dependent on emp#. We next consider the nested relation sal_history.
There are no attributes in sal_history that are multivalue determined by
the emp#, and sal_history is not transitively dependent on emp#.

5

6

We again consider both the nested relations child and sal_history respec-
tively. The relations (emp#, child) and (emp#, date, salary) are both in
NF-NR.

Finally emp# {emp#, child} and emp# {emp#, date}.

Each of the conditions are satisfied so nested relation emp is in NF-NR.

Next, let us consider the following department nested relation:

Since a course is taught in only one department, there is an extended func-
tional dependency, name course. However, each student has a unique
student number, so stuNo stuName. From condition 5 of the NF-NR def-
inition, the nested relation department is not in NF-NR if the nested relation
formed from the key of course and the attributes of student are not in NF-NR.
The nested relation (name, code, stuNo, stuName, address, grade) is not
in 3NF since stuNo stuName.

The nested relation department is not in NF-NR.

5.3 A Normal Form For Semistructured Schemas
The concept of a normal form (NF) ORA-SS schema diagram depends on

the twin concepts of an object class normal form (O-NF) and a relationship
type normal form (R-NF). The structure of the definition is in the style of
[Ling, 1985], where the authors define entity and relationship normal forms
for an Entity-Relationship diagram. The definitions of O-NF and R-NF both
depend on the definition of NF-NR, which is described in the previous section.

Definition 5.2 An object class O of an ORA-SS schema diagram is said to be
in object class normal form (O-NF), if a nested relation constructed from

O’s single-valued simple attributes as its atomic attributes,

86

O’s dependent object classes, multivalued attributes and composite attributes
as its nested relations,

is in normal form NF-NR.

Definition 5.3 A relationship type R of an ORA-SS schema diagram D is said
to be in relationship type normal form (R-NF), if a nested relation con-
structed from

the identifiers of the participating object classes as its single values atomic
attributes,

R’s single valued simple attributes as its atomic attributes, and

R’s multivalued and composite attributes as its repeating groups,

is in normal form NF-NR.

We now consider examples that violate the O-NF and R-NF conditions. In
each example, we provide a schema where the conditions are violated and a
corresponding schema where the conditions are not violated but we do not
describe the transformation from the original schema to the new schema until
Section 5.4.

Example 5.4 Consider the lecturer object class given in Figure 5.6(a). As-
sume we have the following functional dependencies:

The nested relation constructed from this object class is

The relation constructed from the single valued attributes of the nested relation
lecturer is not in 3NF, since staffNo faculty is a transitive dependency,
and as a consequence the nested relation lecturer is not in NF-NR. Hence the
condition in the O-NF definition is violated, and object class lecturer is not in
O-NF. Both object classes, lecturer and department, in Figure 5.6(b) are in
O-NF.

Example 5.5 Consider the ORA-SS schema diagram in Figure 5.7(a). The
schema represents the constraints that the lecturer can teach any of the courses
using the textbooks as prescribed for the course, and is designed as a ternary

Normalization 87

Figure 5.6. ORA-SS schema diagrams for example 5.4

Figure 5.7. ORA-SS schema diagrams for example 5.5

88

relationship among course, text and lecturer. The textbooks of a course should
be independent of the lecturer that teaches the course, i.e., the following mul-
tivalued dependency (MVD) exists:

Consider the nested relation ctl (code, isbn, staffNo) built from the identifiers of
the participating object classes and attributes of the relationship type ctl. This
nested relation is not in NF-NR since the corresponding relation is not in 4NF
because of the above MVD. The condition in the R-NF definition is violated,
and therefore the relationship type ctl is not in R-NF. A schema diagram in
which both relationship types, ct and cl, are in R-NF is shown in Figure 5.7(b).
The object class lecturer is promoted to be a direct child of the object class
course.

We are now in a position to define a normal form for ORA-SS schema dia-
grams.

Definition 5.4 An ORA-SS schema diagram D is in normal form (NF) if and
only if it satisfies the following five conditions:

1

2

3

Every object class O in D is in O-NF.

Every relationship type R in D is in R-NF.

The following two cases are satisfied:

(a) If R is a binary relationship type with parent object class A and child
object class B, and either B is a dependent object class that has an IDD
relationship type with A, or R is a one-to-many or one-to-one relation-
ship type from A to B then all B’s attributes are connected to B, and all
the attributes of R are connected to B.

(b) If R is an n-ary relationship type with n (n>2) participating object
classes and the path going from the top of D linking
those object classes is then for each object class

(i)

(ii)

has an i-ary relationship type with ancestor object classes

If is a dependent object class that has an IDD relationship type
with its ancestors, or the functional dependency between and
its ancestors, can be derived from the
dependency constraints specified for the schema then the attributes
of are connected to object class and the attributes of are
connected to

Normalization 89

4

5

There is no relationship type nested under another many-to-many or many-
to-one binary or n-ary (n>2) relationship type.

No attribute or relationship type can be derived from other attributes and/or
relationship types in D.

Recall that the goal of defining a normal form for ORA-SS schema dia-
grams is to reduce the anomalies in instances of the schema. How does the
definition of NF ORA-SS schema diagrams achieve this? Condition 1 ensures
there are no redundancies within object classes, while condition 2 ensures there
are no redundancies within relationship types. Condition 3(a) and 3(b)ii ensure
that the attributes of object classes and relationship types are connected to the
correct object class for binary and n-ary (where relationship types
respectively without storing redundant data. Condition 3(b)i ensures that the
relationship types are connected to the correct object class for n-ary (where

relationship types. Condition 4 deals with relationship types that are
not well suited to tree structured data models, namely many-to-one and many-
to-many relationship types. If these relationship types have nested relationship
types then there will be redundancy, so condition 4 ensures this type of nest-
ing does not occur. Condition 5 removes global redundancies among a set of
components in an ORA-SS schema diagram.

Other normal forms proposed for semistructured data, such as S3-NF [Lee
et al., 1999] and XNF [Embley and Mok, 2001] deal only with the simpler
functional dependencies, as we will show in Section 5.5.

Example 5.6 Consider the ORA-SS schema diagram in Figure 5.8. If exam-
ined individually, the object classes lecturer and employee are both in O-NF,
and the relationship types are in R-NF. However, if a lecturer is also an em-
ployee (i.e. lecturer(staffNo) employee(staffNo)), then some infor-
mation about lecturer can also be derived from the details of employees as
shown in Figure 5.8(b). The schema for the database is not in normal form
since the staffNo, staffName and qualification of lecturer can be de-
rived from that of employee, which violates condition 5 in Definition 5.4. As
a consequence, staffNo, staffName and qual information for a lecturer will be
repeated in instances of this schema. Figure 5.9 shows an NF ORA-SS schema
diagram with a reference between lecturer and employee.

In this section, we have defined normal form ORA-SS schema diagrams.
In the next section, Section 5.4, we describe an algorithm for transforming an
ORA-SS schema diagram into an NF ORA-SS schema diagram.

5.4 Converting Schemas into the Normal Form
We introduce two approaches for designing semistructured databases using

ORA-SS schema diagrams. The first approach is based on the users’ require-

90

Figure 5.8. ORA-SS schema diagram that is not in NF

ments, which are initially represented in an ORA-SS schema diagram. We
convert the schema diagram into an NF ORA-SS schema diagram, and we
map the normalized schema to a DTD or XML Schema. The second approach
is, given a semistructured data instance, like an XML document, we can design
a schema as follows:

1 Extract the schema from the XML documents using the schema extracting
techniques outlined in Chapter 4.

Normalization 91

Figure 5.9. An NF ORA-SS schema diagram for Figure 5.8

2

3

4

Convert the ORA-SS schema diagram into an NF ORA-SS schema dia-
gram.

Map the NF ORA-SS schema diagram to a DTD or XML Schema.

Restructure the initial XML documents to conform to the generated DTD
or XML Schema.

A key step in the above two approaches is to convert an ORA-SS schema
diagram to an NF ORA-SS schema diagram. The following conversion al-
gorithm takes as input an ORA-SS schema diagram and the dependency con-
straints specified on the schema, and returns an NF ORA-SS schema diagram.
The design steps provide a procedure for deriving NF ORA-SS schema dia-
grams.

The first step of the algorithm transforms non O-NF object classes to ob-
ject classes that are in O-NF, and normally follows one of the two common
approaches. In one approach a new object class is created and it becomes a
child of the original object class. This approach is followed where there is a
transitive dependency among the attributes of the original object class. The
other approach is achieved by creating a new object class which references the
original object class.

The second step in the algorithm involves transforming non R-NF relation-
ship types into relationship types that are in R-NF. This is typically achieved
by moving existing object classes to more appropriate positions in the ORA-
SS schema diagram. This transformation is illustrated in Example 5.5. The
transformations are similar to those for nested relations, which can be found in

92

[Ling and Yan, 1994].

Algorithm ConvertNF

Input: an ORA-SS schema diagram SD, and a set of specified
dependency constraints.

Output: an NF ORA-SS schema diagram.

Step 1: Convert each object class O in SD into O-NF.

Step 2: Convert each relationship type R in SD into R-NF.

Step 3: Construct separate ORA-SS schema diagrams for each object
class in SD with its attributes.

Step 4: For each binary relationship type R from object class to
in SD, assume R is described by a relationship type label

L, 2, p, c.

If R is an IDD relationship type (i.e., is a dependent object
class), or a one-to-many or one-to-one relationship
type,

then nest along with its attributes under and tag the edge
between them with L. Attach all the attributes of R to and
tag the edges between attributes and with the name of R

else (R is not an IDD relationship type, and R is either a many-to-
one or a many-to-many relationship type), construct
a reference object class referencing and nest under

Tag the edge between and with L. Attach all the
attributes of R to and tag the edges between attributes and

with the name of R.

Step 5: For each n-ary relationship type with
participating object classes in SD, assume the path
that links those object classes is Let

represent the relationship from to then R
can be represented by a sequence of relationships
Assume each is described by a relationship type label
name

If either is a dependent object class or
can be derived from the specified dependency constraints for SD,

Normalization 93

then nest along with its attributes under and tag the edge
between them with Attach all the attributes of to
and tag the edges between attributes and with the name of

else (is not a dependent object class, or
construct a reference object class referencing and nest
under Tag the edge between and with Attach
all the attributes of to and tag the edges between attributes
and with the name of

Step 6: Remove redundant relationship types and redundant
attributes from object classes. If a relationship type R is redundant,
then the information provided by R can be derived from other
relationship types, such that data will be redundant in the underlying
instance. To detect a redundant relationship type, we require more
information about the semantic meaning of the relationship types,
which can be provided by the database designer. Some
information about redundant attributes is available from the
ORA-SS inheritance diagram.

We have not considered the case where there is a binary relationship type
between object classes and and they are separated by one or more
other object classes, or where there is an n-ary relationship type (n>2) and the
participating object classes are separated by one or more object classes that
don’t participate in the relationship type. We leave these cases as an exercise
for the reader.

We can prove informally that any ORA-SS schema diagram generated using
Algorithm ConvertNF is an NF ORA-SS schema diagram. Step 1 in Algorithm
ConvertNF ensures that every object class is in O-NF, satisfying condition 1 in
Definition 5.4. Step 2 ensures that every relationship type is in R-NF satisfying
condition 2 in Definition 5.4.

Steps 3, 4 and 5 deal with relationship types.
In step 4, binary relationship types, where the relationship type is either

an IDD relationship type or a one-to-many or one-to-one relationship type,
are reintroduced with attributes connected to either the object class to which
they belong or the relationship type to which they belong. This part of step 4
satisfies condition 3(a) in Definition 5.4.

In step 5, n-ary relationship types (n>2), where the relationship type is ei-
ther an IDD relationship type or the child object class functionally determines
the other object classes involved in the relationship are reintroduced with at-
tributes connected to either the object class to which they belong or the rela-
tionship type to which they belong. This part of step 5 satisfies condition 3(b)
in Definition 5.4.

94

In step 4, binary relationship types, where the relationship type is a many-to-
one or many-to-many relationship type are addressed by creating a new object
class and including a reference between the original child object class and the
new object class. The attributes are connected to either the object class or
relationship type to which they belong.

In step 5, n-ary relationship types (n>2), where the child object class is not
a dependent object class and the child object class does not functionally deter-
mine the other object classes involved in the relationship type are addressed by
creating a new object class and introducing a reference between the original
child object class and the new object class. These parts of steps 4 and 5 satisfy
condition 4 in Definition 5.4.

Step 6 deals with redundant relationship types and redundant object classes,
and satisfies condition 5 of Definition 5.4.

Hence all conditions in Definition 5.4 are satisfied, so any ORA-SS schema
diagram generated using Algorithm ConvertNF is an NF ORA-SS schema di-
agram.

We illustrate Algorithm ConvertNF in the following five examples. Exam-
ple 5.7 illustrates how many-to-many relationship types are dealt with in the
algorithm. Example 5.8 demonstrates a ternary relationship type. Example 5.9
demonstrates how the algorithm deals with object classes that are not already
in O-NF, while Example 5.10 contains an IDD relationship type, and Exam-
ple 5.11 contains attributes that can be derived from other attributes.

Example 5.7 Consider the ORA-SS schema diagram in Figure 5.10(a). There
is a many-to-many binary relationship type lc between lecturer and course,
and a many-to-many binary relationship type ct between course and textbook.
There is an attribute feedback that belongs to relationship type lc.

Step 1: We consider each object class individually. The nested relations
formed for the object class lecturer, course, and textbook are

Each nested relation is in NF-NR so each object class lecturer, course and text-
book is in O-NF.

Step 2: We consider each relationship type individually. The nested rela-
tions formed for the relationship types lc and ct are

Normalization 95

Figure 5.10. Figures for Example 5.7 illustrating Algorithm ConvertNF

Each nested relation is in NF-NR so each relationship type lc and ct is in R-NF.

Step 3: We generate three schema diagrams for the object classes with at-
tributes as shown in Figure 5.10(b).

Step 4: We represent the binary relationship type lc. Since lc is a many-
to-many relationship type from lecturer to course, we create a reference object
class courseRe f referencing course and nest courseRef under lecturer, as
shown in Figure 5.11(a). The attribute feedback is attached to courseRef,
and the edge between courseRef and feedback is tagged with lc.

Then, we represent the binary relationship type ct. Since ct is a many-to-
many relationship type from course to textbook, we create a reference object
class textbookRef referencing textbook and nest textbookRef under course,
as shown in Figure 5.11(b).

96

Figure 5.11. Figures for Example 5.7 illustrating Algorithm ConvertNF

Step 5: There are no n-ary relationship types.

Step 6: There are no redundant relationship types or attributes.

The schema diagram in Figure 5.1 1(b) is in normal form.

The above example illustrates the normalization process by removing re-
dundancy caused by many-to-many relationship types. The process to remove
redundancy due to n-ary relationship types is illustrated in the following exam-
ple.

Example 5.8 From the ORA-SS schema diagram D in Figure 5.12(a) we can
derive the following functional dependencies. Because of the child participa-
tion constraint 1 : 1 in the label of the ternary relationship cst

Since code, stuNo and staffNo are the identifiers of course, student and
tutor respectively,

Normalization 97

Figure 5.12. Figures for Example 5.8 illustrating Algorithm ConvertNF

There is a binary relationship type cs between course and student and a
ternary relationship type cst among course, student and tutor. Grade is an at-
tribute of the binary relationship cs, and feedback is an attribute of the ternary
relationship cst.

Step 1: We consider each object class individually. The nested relations
formed for the object classes course, student, and tutor are

98

Each nested relation is in NF-NR so each object class course, student and tutor
is in O-NF.

Step 2: We consider each relationship type individually. The nested rela-
tions formed for the relationship types cs and cst are

Since the child participation constraint of relationship type cst is 1 : 1, the
identifier of the nested relation cst is code, stuNo (rather than the expected
code, stuNo, staffNo). Each nested relation is in NF-NR so each relation-
ship type lc and cr is in R-NF.

Step 3: We generate three schema diagrams for the object classes course,
student and tutor, as shown in Figure 5.12(b).

Step 4: We represent the binary relationship type cs as shown in Figure
5.13(a). Since cs is a many-to-many relationship type from course to stu-
dent, we create a reference object class stuRef referencing student and nest
stuRef under course. Relationship attribute grade is connected to stuRef.

Step 5: The ternary relationship cst is considered. Since

cannot be derived from the given functional dependency constraints, we create
a reference object class tutor Re f referencing tutor, and nest tutor Re f under
stuRef as shown in Figure 5.13(b). Relationship attribute feedback is con-
nected to tutor Re f.

Step 6: There are no redundant attributes or relationship types.

The diagram shown in Figure 5.13(b) is now in normal form.

In the above two examples, the object classes of the given schema are ini-
tially in object normal form (O-NF). We now illustrate the normalization pro-
cess when the given object classes are not in O-NF.

Normalization 99

Figure 5.13. Figures for Example 5.8 illustrating Algorithm ConvertNF

Example 5.9 Consider the object class student given in Figure 5.14(a). We
have the following functional dependency:

From the diagram, we have:

Step 1: Consider the nested relation formed from the attributes of object
class student,

100

Figure 5.14. Figures for Example 5.9 illustrating Algorithm ConvertNF

student (stuNo, uni (uniName, country), stuName, address).

where uni is a composite single valued attribute of the student relation. This
nested relation is not in NF-NR, since country is transitively dependent on
stuNo. Following Algorithm ConvertNF, we create a new object class named
uni with uniName and country as its identifier and attribute respectively, then
we generate a many-to-one relationship type su from student to uni.

Step 2: Relationship type su is in R-NF.

Step 3: Separate schema diagrams are created for object classes student
and uni.

Step 4: We observe that relationship type su is a many-to-one relationship
type, so the schema diagram obtained in Figure 5.14 (b) is still not an NF ORA-
SS schema diagram. A new object class uniRef is created and a reference is

Normalization 101

introduced between uniRef and uni.

Steps 5 and 6: There are no n-ary relationships in the ORA-SS diagram,
and no redundant attributes or relationship types.

The final result shown in Figure 5.14(c) is now in normal form.

Next, we illustrate the process of transforming an ORA-SS schema with an
IDD relationship type into its normal form.

Example 5.10 Consider the ORA-SS schema diagram in Figure 5.15(a), with
an IDD binary relationship type from employee to dependent. We have the fol-
lowing functional dependency:

Step 1: Consider the nested relation formed from the attributes of object
class employee,

This nested relation is not in NF-NR, since schoolAddress is transitively de-
pendent on {staffNo, depName}. Following Algorithm ConvertNF, we cre-
ate a new object class named school with school and schoolAddress as its
identifier and attribute respectively, then we generate a many-to-one relation-
ship type ds from dependent to school, as shown in Figure 5.15(b).

Step 2: Relationship type ds is in R-NF.

Step 3: Separate schema diagrams are created for object classes employee
and school.

Step 4: We observe that relationship type ds is a many-to-one relationship
type, so the schema diagram obtained in Figure 5.15 (b) is still not an NF ORA-
SS schema diagram. A new object class schoolRef is created and a reference
is introduced between schoolRef and school.

Steps 5 and 6: There are no n-ary relationships in the ORA-SS diagram,
and no redundant attributes or relationship types.

The final example illustrates normalization of an ORA-SS diagram with
redundant attributes.

102

Figure 5.15. Figures for Example 5.10 illustrating Algorithm ConvertNF

Normalization 103

Figure 5.16. Figures for Example 5.11 illustrating Algorithm ConvertNF

Example 5.11 Consider the ORA-SS schema diagram in Figure 5.16. Each
department has a name, information about the lecturers working in the de-
partment and information about the research projects undertaken within the
department. The lecturer information consists of staffNo, staffName, grad
students, and information about the laboratories he/she works in as well as
his/her publications; the project information consists of an id, the participat-
ing members (lecturers), and members publications on that project.

Step 1: The nested relations formed for each of the object classes are in
NF-NR so the corresponding object classes are in O-NF.

Step 2: The nested relations formed for each of the relationship types are in
NF-NR so the corresponding relationship types are in R-NF.

Step 3: We generate seven schema diagrams for the object classes.

Step 4: We recognize that the binary relationship types ll, lp and pm are
many-to-many relationship types. A new object class is created for each of
the children object classes in these relationship types, and a reference is intro-

104

Normalization 105

Figure 5.18. Figures for Example 5.11 illustrating Algorithm ConvertNF

duced between the new object class and the original.

Step 5: We recognize that in the ternary relationship type pmp (in Figure
5.16)

so we generate an object class memPubRef under memberRef, and let the
object class memPubRef reference memPublication as shown in Figure 5.17.

Step 6: The members of projects are lecturers and research assistants, so
the details of lecturers will not only be stored in a relationship with depart-
ment objects but also in a relationship with project objects. In order to re-
move this replication a new object class is created which is referenced by both
member and lecturer. However, because the new object class has the same
attributes as the object class member (as shown in the inheritance diagram
in Figure 5.18), we are able to replace the new object class with a reference
object class member.

Because some of the lecturers are members of projects, some publications
that are instances of memPublication are also instances of lectPublication.

106

Normalization 107

In order to remove this replication a new object class is created which is refer-
enced by both memPublication and lectPublication. Because the object class
publication has the same attributes as both object classes lectPublication
and memPublication (as shown in Figure 5.18), we are able to remove both
object classes. If all the publications of lecturers were published by members
of a project, then we could remove lectPublication. However, since some lec-
turers may not work on projects or may have publications other than those that
are published as part of a project, we retain lectPublication.

The ORA-SS schema diagram shown in Figure 5.19 is now in normal form.

5.5 Discussion

In a survey which takes a database-centric view of XML, [Widom, 1999]
noted that the concept of functional dependencies in the context of XML has
not been explored.

However, keys, which are a special case of functional dependencies, are
studied in the context of XML by [Buneman et al., 2001a]. It offers two basic
definitions for keys in XML : strong keys and weak keys. If a key is a strong
key, then given a set of elements, each element in the set must have a path
to the key node, and the value of the key node must be unique. If a key is a
weak key, then given a set of elements, for each element in the set, if there is a
path to the key node then the value of the key node must be unique. Consider
an XML document in which it is not mandatory for every person to have a
driving licence number but if they do, then the number is unique. The driving
licence number is then a weak key, but not a strong key. Weak key paths can be
missing, which makes weak keys similar to null-valued keys in the relational
context. [Buneman et al., 2001a] also noted that there are many other possible
definitions for keys, and introduced the concept of relative keys. Noting that
keys in many data formats (e.g. scientific databases) have a hierarchical struc-
ture, relative keys provide hierarchical key structures to accommodate such
databases. Consider an XML document that contains information about stu-
dents enrolled in courses, assuming that a student can enroll in a course only
once then the student number is a key relative to the course. Such structures
are similar to the notion of ID dependent relationships in Entity Relationship
diagrams.

[Fan and Simeon, 2000] proposed constraint languages to capture seman-
tics of XML documents using simply key, foreign key and inverse constraints.
However, functional dependencies, which form the theoretic foundation for
keys, were not addressed in these works.

The concept of allowing controlled data redundancy in exchange for faster
processing was introduced in [Ling et al., 1996]. In Chapter 7, we present
analogous arguments in the XML context for allowing controlled data redun-

dancy. Preliminary work has also been done on semantics preservation when
translating data between the relational tables and XML [Lee and Chu, 2000].

Normal forms defined for relational databases, both 3NF, BCNF, 4NF and
5NF for the flat relational model, and nested relational normal forms like
NNF [Ozsoyoglu and Yuan, 1987] and NF-NR [Ling and Yan, 1994] have been
studied intensively in the past two decades. However, the above normal forms
for traditional data models are not directly applicable to semistructured data for
the following reasons. First, the semistructured data model is richer and more
complex than the relational data model. For example, XML incorporates car-
dinality constraints that are not found in the relational data model. Second, in
semistructured data, the schema is descriptive, rather than prescriptive. Hence
no regular structure is expected in semistructured data instances.

We mentioned in this chapter that ORA-SS bears some similarity to nested
relations, in that both have a tree-like structure and allow repeating groups
or multiple occurrences of objects, and that such correspondence allows us to
map an ORA-SS schema diagram to nested relations. However, ORA-SS is
different from nested relations in the following significant ways: First, ORA-
SS defines relationship types that are not available in nested relations. Second,
reference is one of the four main concepts defined in ORA-SS schema dia-
grams, while it is represented using foreign keys in nested relations. These
differences in the data models determine the differences in their normal form
definition as well as their design methods.

The first work to investigate the problem of normalization in semistructured
schemas is presented in [Lee et al., 1999]. It defines an S3-NF normal form
for S3-Graph (or SemiStructured Schema Graph), which is basically a labeled
graph in which vertices correspond to objects and edges represent the object-
subobject relationships. Unlike the ORA-SS schema diagram, the S3-Graph
is not able to model the semantics traditionally needed for recognizing redun-
dancy in databases. For example, it cannot show the degree of an n-ary re-
lationship type; neither can it distinguish between attributes of object classes
and attributes of relationship types. To identify redundancy in an S3-Graph,
[Lee et al., 1999] define a dependency constraint called SS-Dependency. An
S3-Graph is in S3-NF if there is no transitive SS-dependency. Hence, only a
limited kind of redundancy can be recognized by S3-NF. In [Lee et al., 1999],
the authors present two approaches for designing S3-NF databases. One is a
decomposition method, which can transform the schema to reduce redundancy
based on SS-dependency. This decomposition may not always remove all tran-
sitive functional dependencies. The other method is to transform a normal form
ER diagram [Lee et al., 1999] into an S3-Graph. Although the result obtained
is in S3-NF, it is not unique and is dependent on the path taken to construct it.

108

Normalization 109

Therefore, the result may not satisfy the application requirements or comply
with the user’s viewpoints.

In [Wu et al., 2001b], we propose a normal form for the semistructured
schema called NF-SS, which extends S3-NF. NF-SS involves the XML model
with integrity constraints, such as extended functional dependency (EFD) and
key constraints. The NF-SS model improves on S3-Graphs by providing the
notion of objects and attributes, and specifying cardinality on the schema.
However, the NF-SS model still has no concept of composite attributes, and
no distinction between relationship type attributes and object class attributes.
A major difference between NF ORA-SS and NF-SS is that NF-SS does not
deal with relationship types, as they are not available in its data model defini-
tion. A semistructured schema is in NF-SS, if it has no transitive or partial EFD
and incoherent EFD. This is recursively defined by requiring the components
of every object type (starting from the root and then proceeding downward)
should not be transitively dependent on their parents, and should be as near
to their owners as possible. Since the semantic information expressed by the
data model is very limited, the NF-SS definition identifies redundancy mainly
through the specified EFDs for the schema. In [Wu et al., 2001b], we propose
a restructuring approach to design NF-SS. We develop an iterative algorithm
based on a set of heuristic rules to restructure a semistructured schema into
a normal form. The restructuring involves the decomposition of object types,
creation of new object types and regrouping of components in a semistructured
schema. The objective is to remove transitive or partial EFD and incoherent
EFD, and is accomplished by identifying violations of the conditions of NF-SS
given the dependency and key constraints. Similar to the decomposition meth-
ods for relational normalization, the NF-SS restructuring approach is not able
to guarantee dependency covering or dependency preservation.

In [Embley and Mok, 2001], the authors propose a normal form for XML
document called XNF (XML Normal Form). The process of generating an
XNF-compliant DTD follows: it first takes a conceptual model-based method-
ology, using CM hypergraphs (conceptual-model hypergraphs), to model an
application. Then it translates the CM hypergraph M to a scheme-tree forest F.
F is in XNF if each scheme tree in F has no potential redundancy with respect
to a specified set of (functional and multivalued) constraints C, and F has as
few scheme trees as any other scheme-tree forest corresponding to M in which
each scheme tree has no potential redundancy with respect to C. Finally, it
generates a DTD from the scheme-tree. Like S3-Graph, CM hypergraph has
no concept of attributes resulting in too many objects in a schema; in addition,
CM hypergraph has no hierarchical structure. The algorithms for translating
a CM hypergraph M to a scheme-tree forest are non-deterministic, and suffer
from inefficiency. Additionally, adding or deleting required information re-
quires a redesign of the whole schema. Further, the algorithms generate a large

110

number of solutions rather than verifying whether a semistructured schema is
in normal form or not. While the ISA relationship can be represented in CM
hypergraphs, it is removed from CM hypergraph before input to the algorithm.

In [Arenas and Libkin, 2004], the authors show how to detect certain kinds
of anomalies, and how to transform documents into ones that do not suffer from
the same anomalies. They first introduce functional dependencies for XML by
considering a relational representation of documents and defining functional
dependencies on them, and later extend functional dependencies while con-
sidering functional dependencies in incomplete relations. They show that the
normal form they define, called XNF, extends BCNF when limited to relational
data. Many of the constraints while not being captured in the data model are
captured in the definition of functional dependencies. Functional dependencies
are already the area that designers have the most problem specifying in the re-
lational model so making them more complicated and unfamiliar to designers
will make the transition from the relational to the semistructured schema de-
sign more difficult. The functional dependencies are dependent on the XML
Tree, including paths through the tree, so when paths change the functional
dependencies change. For example to express the constraint that two distinct
student elements of the same course cannot have the same stuNo in the XML
document in Figure 5.1, we would write:

For this reason XNF can never be dependency preserving. Also multivalued
dependencies are not considered in XNF.

A common problem for the above normalization approaches is the follow-
ing: the whole schema has to be redesigned when requirements change and
information is added or deleted. Such approaches can be fairly inefficient for
processing semistructured data, because the overhead of redesigning the whole
schema structure can be substantial if the data structure is changing frequently.

The ORA-SS design approach presented in this chapter reduces the design
complexity by facilitating the 2-level design technique. First, a designer iden-
tifies object classes and relationship types from the user’s specifications. Then
the designer adds attributes for object classes and relationship types. This 2-
level design technique not only gives more control to the designer and allows
him/her to evaluate each successive refinement of the schema, but also accom-
modates one of the central characteristics of semistructured data, namely its
frequently changing structure [Abiteboul et al., 1999b].

Chapter 6

VIEWS

XML views are essential for managing XML data on the Web. Just like
views in traditional databases, XML views provide application-specific views
of the source data and secure the source data [Abiteboul, 1999].

Several systems have been proposed to support XML views. Systems such
as SilkRoute [Fernandez et al., 2000] and XPERANTO [Carey et al., 2000]
provide XML views over relational databases. Others such as Xyleme [Cluet
et al., 2001] and Active View [Abiteboul et al., 1999a] allow the definition
of XML views over native XML files. The ActiveView system [Abiteboul
et al., 1999a] defines views using the object-oriented approach, which allows
not only data, but also methods.

XML Views are also used as a middleware in data integration systems such
as MIX [Baru et al., 1999] and MARS [Deutsch and Tannen, 2003]. The MIX
system [Baru et al., 1999] integrates heterogeneous data sources and offers
views based on the underlying data sources.

While existing systems provide for the definition of XML views, they do
not validate the views that are created. Therefore, there is no guarantee that the
views defined are valid.
Valid XML Views. Let V be a view defined over an XML data source D.
V is said to be valid if it does not violate the semantics, that is, functional
dependencies, relationship types and their degrees (binary, ternary and n-ary),
and key and foreign key constraints implied in D.

In this chapter, we describe a systematic approach to ensure the validity of
XML views. We have designed a set of rules to guide the design of valid XML
views. Section 6.1 gives an example to illustrate the need for view validation.
Sections 6.2 to 6.6 describe the various operators for designing views, and the
rules for ensuring that the view obtained is valid, presents Section 6.7 discusses
related work and we conclude in section 6.8.

112

6.1 Motivating Example
We will first illustrate the concept of valid and invalid views. Invalid views

arise when important semantics are not expressed in the underlying data model.
Consider the following segment of an XML document on supplier, project

and part (spj.xml:

The following functional dependencies hold in the above XML document:

The sub-element price denotes the price of its parent element part that is
supplied by its ancestor element supplier; while the sub-element qty denotes
the quantity of its parent element part supplied by its ancestor element supplier
in its ancestor element project.

Figure 6.1 shows the ORA-SS schema of the XML document spj.xml. There
are three object classes - supplier, project and part. Based on the functional
dependencies implied in the XML document, the identifiers of supplier, project
and part are sno, jno and pno respectively.

In addition, there are two relationship types in the ORA-SS schema. The
first one is a binary relationship type between the object classes supplier and
part which has been labeled as sp(supplier, part) on the incoming edge of the
object class part. Note that the two participating object classes of the relation-

Views 113

Figure 6.1. A Supplier-Part-Project ORA-SS Schema Diagram

ship type sp are not adjacent to each other in the root-to-leaf path in Figure 6.1.
Hence, the names of the participating object classes are explicitly listed on the
label of the edge.

The attribute price is a single-valued attribute of the relationship type sp be-
cause of the functional dependency:

The second relationship type is a ternary relationship type spj, which in-
volves the three object classes. It has a single-valued attribute qty because of
the functional dependency:

The semantics captured by the ORA-SS schema plays an important role in
the design of valid XML views. The following shows the DTD of the XML
document spj.xml:

114

Note that we cannot express jno and pno as the ID of the elements supplier
and part respectively in the DTD. This is because these elements are involved
in a many-to-many relationship with project and will occur multiple times in
an XML document.

We observe that the elements price and qty are represented in the same man-
ner as the elements supplier and part. In other words, the DTD cannot express
the two functional dependencies:

Further, the DTD also cannot differentiate object class, attribute and rela-
tionship type.

Let us now design a view that swaps the hierarchical positions of the el-
ements project and part. That is, project becomes a child of part and part
becomes the parent of project. Obviously, the attributes pno and pname of the
object class part will move up together with part since they are properties of
part. Similarly, the attributes jno and jname of object class project will move
down with project.

A possible view as shown in Figure 6.2 is created. Since the DTD XML
does not explicitly express the functional dependencies involving price and
qty, these elements have also moved up together with part. This is an invalid
view because it violates the functional dependency in the source document:

The problem of invalid view can be resolved by utilizing the ORA-SS model.
Based on the ORA-SS source schema in Figure 6.1, we can design a valid view
that swaps project and part (see Figure 6.3).

Views 115

Figure 6.2. An Invalid XML View of the Supplier-Part-Project Schema in Figure 6.1

Figure 6.3. A Valid XML View of the Supplier-Part-Project Schema in Figure 6.1

The ORA-SS source schema explicitly expresses the functional dependen-
cies involving price and qty. Thus, price will be placed under part and qty
will be placed under project so that the original functional dependencies are
preserved in the view.

116

We have demonstrated that invalid views may be wrongly created if the
underlying data model does not explicitly express the necessary semantics,
namely, functional dependencies, relationship types and their degrees (binary,
ternary or n-ary), and key and foreign key constraints. Such semantics are not
captured by the DTD or XML Schema. Thus, we cannot determine whether
an XML view is valid or not based on a DTD or XML Schema. However, the
ORA-SS model can explicitly express all these semantics, which allows us to
determine if an XML view is valid or not.

In the following sections, we will give more details on how to design valid
XML views based on ORA-SS. The XML views considered are created by
applying four transformation operations on the source ORA-SS schema. The
operations are select, drop, join and swap. The select and join operations are
analogous to the select and join operations in relational database. The drop
operation is the opposite of the project operation in relational database. The
fourth operation swap is unique in XML; it interchanges the positions of parent
and child object classes. An XML view can be created via a composition of the
four operations, that is, a view may first apply a selection operation followed
by a join operation, etc. We have developed a set of rules for each operator
to guarantee the validity of XML views when any of the four operations is
applied.

6.2 The Select Operator
Selection operations are commonly used to filter data by using predicates.

They are similar to the selection operators in relational databases. The structure
of the source schema remains unchanged and will not cause any changes in the
semantics or the hierarchical structure of the source schema. Therefore, if
an XML view only applies selection operations, it will always be valid. This
operation is also supported in the Active Views system and MIX system.

Example 6.1 Suppose we want to design a view called expensive-supplier on
the ORA-SS source schema diagram in Figure 6.1 that returns the suppliers
who supply some project with part and the price of the part is greater than 80.
Figure 6.4 shows the view with a selection predicate on the attribute price.

In general, selection operations place predicates on the source schema, which
filter out data that do not satisfy those predicates. They do not restructure the
source document and thus, will not lead to any violation of semantics in the
source schema. Therefore, there is no need to set up rules to guarantee the
validity of views for selection operations. In fact, one can easily design such
views using some simple data models such as OEM or XML DTD.

Views 117

Figure 6.4. An XML View of the Supplier-Part-Project Schema in Figure 6.1 obtained by the
Selection Operator

6.3 The Drop Operator
The drop operation drops object classes or attributes in the source schema.

It essentially extracts a subset of the structure of the source schema. When an
object class is dropped, it may be because the object class itself is dropped,
or because the identifier of the object class is dropped. When a projection
operation drops object classes or attributes in the source schema, it affects
relationship types involving the dropped object class. In another words, the
semantics of the source schema will be affected.

The following example illustrates the case where a projection operator is
applied.

Example 6.2 Suppose we define a view called project-part on the ORA-SS
schema diagram in Figure 6.1. This view removes the object class supplier
(see Figure 6.5). This implies that all the attributes of supplier, namely, sno
and sname, have to be dropped since object attributes cannot exist without its
owner object class.

We also need to remove the relationship types sp and spj, both of which
involves the object class supplier that has been dropped. These two relation-
ship types will not exist in the view schema. In addition, the attribute of the
relationship type sp, that is, price, is also dropped from the view schema.

The attribute qty of the relationship type spj can be mapped to an aggregate
attribute called total-qty, which represents the total quantity of a part in a

118

Figure 6.5. An XML View of the Supplier-Part-Project Schema in Figure 6.1 obtained by the
Drop Operator

given project. In other words, it is an attribute of a new relationship type
involving project and part, which is derived from spj.

The above example shows that flexible views can be designed based on
ORA-SS with its additional semantics. However, we have to handle the seman-
tics properly so that valid views are guaranteed. This example also implies the
following four rules that guarantee the validity of XML views when projection
operations are applied.

Rule Drop1. If an object class O in a source schema is dropped from a view,
then all the attributes of O must be dropped from the view too.

Rule Drop2. If an object class O in a source schema is dropped from a view,
then all the relationship types that the object class is involved in must be
dropped from the view too.

Rule Drop3. If an object class O in a source schema is dropped from a view,
then for each relationship type R involving O, a new rela-
tionship type is generated by projecting R on the dropped object class O.
The attributes of R can be dropped, or mapped into attributes with aggre-
gate function, such as avg, max/min or sum. Alternatively, the attributes of
R can be mapped into an attribute of type bag of values if they cannot be
aggregated.

Rule Drop4. Let an object class O in a source schema be dropped from a
view. Suppose the following conditions are true:

1 O is the only common participating object class of two relationship
types R1 and R2;

Views 119

2

3

All the participating object classes of R1 and R2 are in a continual
path;
The participating object classes of R1 is not a subset of the participat-
ing object classes of R2 and vice versa.

Then a new relationship type can be obtained by joining R1 and R2 based
on the object class O.

We will now discuss each of the four rules in details and demonstrate why
they are able to guarantee the validity of XML views.

RULE DROP1

Intuitively, Rule Drop1 indicates that we cannot leave an attribute in the
view if its owner object class has been dropped from the view. Without their
object class, the attributes will lose their meaning.

RULE DROP2

Rule Drop2 handles the situation when one participating object class of a
relationship type is dropped in the view, in which case the relationship type
is broken up. Although the relationship type will not be shown in an XML
document or an XML schema, it needs to be dropped to keep the semantics in
the ORA-SS view schema consistent.

After a relationship type has been dropped, the rest of the object classes in-
volved in the relationship type still have semantic connections in the view. In
order to maintain these semantic connection in the view, we can derive a new
relationship type from the relationship type that has been dropped. This gives
us the Rule Drop3.

RULE DROP3

Suppose object classes participate in a relationship type R in
a source schema. Let us assume that one of the object classes, say

is dropped from a view. According to Rule Proj3, a new relationship type
R’ can be derived from R by projecting out and all the attributes of R, that
is, all the object classes of R except for are kept in the new relationship type
R’.

It is clear that R’ will not violate the semantics implied in R according to
the theory of relational database. Instead, it is able to maintain the semantic
connection among the object classes in the view.

The attributes of R can be dropped from the view. Alternatively, new at-
tributes can be derived according to the Rule Drop3. The new derived attributes
remain valid in the view schema.

120

This approach correctly maintains the semantics among the remaining ob-
ject classes of the relationship type R.

RULE DROP4

The above three rules are not sufficient when the object class that has been
dropped from the view is involved in more than one relationship type in the
source schema. In such situations, we need to join these relationship types in
order to maintain the semantic connection among them.

Rule Drop4 contains additional conditions besides the project operator it-
self. We will show why these conditions are important.

Let us assume that the first condition does not hold, that is, R1 and R2 have
other common object classes. In this case, it is clear that we do not have to join
R1 and R2 since the semantic connection between R1 and R2 is still explicitly
expressed through the other common object classes.

Next, suppose the second condition is false, that is, all the participating
object classes of R1 and R2 do not lie in the same path. In this case, we cannot
join R1 and R2 since the object classes of the new relationship type will not be
in the same path, and the new relationship type will be meaningless.

Finally, suppose that the third condition is false. Then either all participating
object classes of R1 participate in R2 or vice versa. In this situation, if the only
common object class of R1 and R2 is dropped, then all the object classes of R1
must have been removed in the view schema. Thus, we do not need to join R1
and R2 in the view schema.

The view designed using Rule Drop4 is valid. Suppose object classes
participate in the relationship type Rl in the order from ancestor to

descendant, and object class participate in the relationship
type R2 in the order from ancestor to descendant in the source schema. Then
the relationship types R1 and R2 are in the same path in the schema, and they
do not contain each other. Suppose that and are the same object class
and this object class is the only object class that is common to R1 and R2, and
this object class is dropped from the view.

Since all the conditions in Rule Drop4 are satisfied, we can derive a new
relationship type R’ in the view schema by joining R1 and R2. Obviously, the
derived relationship type R’ maintains the semantic connection among the two
relationship types, and does not violate the semantics of R1 and R2 accord-
ing to the theory of relational database. Therefore, the semantics among the
remaining object classes that participate in R1 and R2 in the view is correctly
kept and the view is valid.

The following example illustrates how Rule Drop4 is applied to ensure the
validity of a view.

Views 121

Figure 6.6. ORA-SS source schema involving Project, Staff and Publication.

Example 6.3 Figure 6.6 shows an ORA-SS source schema involving the object
classes project, staff and publication. There is a binary relationship type called
js involving the object classes project and staff. This relationship type captures
the staff that participates in a project. The binary relationship type sp between
staff and publication indicates the publications that a staff publishes.

Figure 6.7 shows an ambiguous view that has been designed based on Fig-
ure 6.6. The intermediate object class staff has been dropped from this view.
However, it is not clear how the view is derived from the source schema. We
observe that the semantic connection between the two object classes project
and publication has been lost.

In fact, we should maintain the semantic connection between project and
publication to depict the publications that are published by the staff involved
in a given project. Rule Drop4 states that we need to generate a new relation-
ship type jp between the two object classes in the view, in order to ensure that
the view is valid and meaningful (see Figure 6.8). The relationship type jp is
derived by joining the relationship types js and sp over the object class staff in
the source schema in Figure 6.6.

6.4 The Join Operator
ORA-SS makes it possible to create XML views by applying join operations

and guarantee they are valid. This is because ORA-SS distinguishes between

122

Figure 6.7. An ambiguous view of Figure 6.6.

Figure 6.8. A valid view of Figure 6.6. The new relationship type jp is derived by joining js
and sp.

object classes and attributes so that two object classes can be joined. Further-
more, ORA-SS differentiates between attributes of object classes and attributes
of relationship types so that attributes of relationship types will not be treated
as attributes of the joined object class improperly. These features of ORA-SS
are not offered by other existing semistructured data model, which will not
allow the design of such views.

A standard join operation joins object classes and their attributes together by
key - foreign key references. Referencing object classes and referenced object
classs may occur in an ORA-SS source diagram or in two ORA-SS source
diagrams. The former has an attribute that is actually the OID of the latter
object class. Therefore, the former is able to refer to the latter by the attribute,
which plays the role of a foreign key.

Views 123

Figure 6.9. ORA-SS schema diagram on Project, Supplier, Part and Retailer

When a join operator is applied to an ORA-SS source schema to create
a view, we will remove the referenced object class from the view schema and
attach all attributes of the referenced object class to the referencing object class.

Example 6.4 Figure 6.9 shows an ORA-SS source schema diagram. The ob-
ject class supplier’ under project refers to an object class supplier with the
identifier of supplier. There is a relationship type called rs between supplier
and retailer. This relationship type has an attribute called contract that is con-
nected to retailer.

Suppose we want to design a view called join-supplier, which applies a join
operator to join supplier and supplier’ together. Figure 6.10 shows the view
schema in which the object class supplier has been removed, and the attributes
sno and sname of supplier have been connected to supplier’. Further, the
object class retailer has moved to below supplier’, together with the attribute
contract. Thus, the relationship type rs is maintained in the view.

The above example demonstrates that when a join operator is applied, we
need to handle the object classes and relationship types in the path of the ref-
erenced object class.

We develop two rules to ensure the validity of views when a join operation
is carried out. The first rule handles the descendants of the referenced object
class and their relationship types. The second rule then handles the ancestors

124

Figure 6.10. View of Figure 6.9 obtained by a join operation

of the referenced object class and their relationship types.

Rule Join1. If a referencing object classes is joined with a referenced
object class in the design of a view, then all attributes of are attached
to in the view. If there is a relationship type R which does not involve any
ancestors of but only involves the descendants of then

Case 1: Keep R and all its participating object classes in the view.

Case 2: Drop some of the object classes of R in the view to derive a new
relationship type. The attributes of R can either be dropped, mapped into at-
tributes with some aggregate function.

Rule Join1 first attaches the attributes of to since refers to by
a foreign key to key reference and plays the role of in the view. Next,
Rule Join1 handles the relationship types involving the descendants of in
the view. There are two possible scenarios. Suppose one of the relationship
types is R. In Case 1, R is kept in the view. Thus, all the participating object
classes of R are also kept in the view and plays the role of in R. It is
clear that the semantics of R is maintained in the view and the view is valid.

In Case 2, a new relationship type is derived from R by dropping some of
the participating object classes of R. The attributes of R can also be handled
properly based on users’ requirements. According to Rule Drop3, the new
relationship type will not violate the semantics of R and the view is thus valid.

Views 125

On the other hand, we also need to handle the ancestors of in the source
schema and their relationship types, especially when the ancestors of par-
ticipates in a relationship type with or its descendants. Rule Join2 handles
this situation.

Rule Join2. If a referencing object class is joined with a referenced object
class in designing a view, then all the attributes of are attached to in
the view. If there is a relationship type R involving the ancestors of then

Case 1: Keep R in the view and swap the ancestors of involving R below

Case 2: Drop the ancestors of involving R in the view to derive a new
relationship type. The attributes of R can be dropped or mapped into attributes
with some aggregate function.

Rule Join2 handles the relationship types that involve the ancestors of
in the view. There are two possible cases when processing these relationship
types. Suppose one of the relationship types is R. In Case 1, R and the an-
cestors of participating in R are needed in the view schema. Thus, the
ancestors must be swapped first and become the descendants of so that they
can be attached as descendants in the view schema. In this way, R is kept
intact in the view and the view is still valid. Notice a new operator, i.e. swap
operator is utilized in this case. More details on the swap operator will be given
in the following section.

In Case 2, we simply drop all the ancestors of involving R in the view. As
the ancestors of are already in the view, the ancestors of in the source
schema cannot appear as ancestors of in the view. After dropping these
ancestors, a new relationship type can be derived from R and the attributes can
be handled properly in the view schema. In this way, we can ensure that the
view designed will be valid.

6.5 The Swap Operator
The swap operation restructures the source schema by exchanging the po-

sitions of a parent object class and its child object class. Swap operations are
unique in XML because they can be applied only in hierarchical structure. Fur-
ther, the swap operator also raises the issue of view reversibility. That is, when
we swap two object classes to construct a view schema, we can reconstruct
the original source schema from the view by carrying out a reverse swapping.
Therefore, we require not only rules to design valid views, but also rules to
guarantee that the designed views are reversible.

126

Figure 6.11. ORA-SS schema of Supplier-Part-Project

Figure 6.12. View of Figure 6.11 obtained by a swap operation

The following example illustrates how to design valid XML views when the
swap operation is applied.

Example 6.5 Figure 6.11 shows a source schema involving the object classes
supplier, part and project. Suppose we want to design a view called swap-
supplier-project, that swaps the object classes supplier and project hierarchi-
cally. Figure 6.12 shows the view obtained.

Views 127

After the object classes supplier and project have been swapped, we need to
ensure that their attributes are relocated properly.

It is clear that the attributes sno and sname should move together with their
owner object class supplier. Likewise, the attributes jno and jname should
move together with their owner object class project. However, the attribute
price, which belongs to the relationship type sp, must remain with the new
child object class of sp, that is, supplier in order to preserve the semantics of
the source schema, that is, the functional dependency

If the attribute price remains with the object class part, then it will violate
the functional dependency in the source schema.

Similarly, the attribute qty of the relationship type spj is connected to the
lowest participating object class of spj, that is, supplier.

We will now examine the rules that guarantee the validity of views when
swap operations are applied.

Rule Swap1. If a view swaps two object classes and where is a
descendant of in the source schema, then the attributes of and must
remain attached to and respectively in the view.

Rule Swap 1 is straightforward and ensures that the attributes of and
do not become meaningless in the view after and has been swapped.

We observe that relationship types in the source schema that involve
and/or are affected since the hierarchical positions of and have been
interchanged. Given two object classes and where is a descendant of

in an ORA-SS schema, the relationship types that are affected after a swap
of and can be classified into the following three categories:

The first category is the set of relationship types which do not involve any
descendants of but involve the ancestors of or in the ORA-SS
source schema. That is, these relationship type involve object classes that
occur in the straight path of and (up to

The second category is the set of relationship types which involve and
object classes in the branch paths between and the parent of

The third category is the set of relationship types which involve and its
descendants.

128

These three categories of affected relationship types are handled by the rules
Swap2, Swap3 and Swap4 respectively.

Rule Swap2. Suppose two object classes and in a source schema are
swapped during the design of a view. Let S be the set of relationship types
which do not involve any descendants of but involve the ancestors of
or in the ORA-SS source schema. For each relationship type R in S, the
attributes of R are attached to the lowest participating object class of R in the
view.

Rule Swap3 Suppose an object class in a source schema is swapped with
its descendant object class during the design of a view. If there exists a re-
lationship type which involves at least and where is a descendant of
an object class that lies in the path between and but does not lie
in the path between and in the ORA-SS source schema, then the subtree
rooted at is attached to in the view.

Rule Swap4 Suppose an object class in a source schema is swapped with
its descendant object class during the design of a view. For each child
of the object class let T be the subtree that is rooted at Let S be the set
of relationship types which involve at least and its descendants in T. If
is the lowest participating object class among the relationship types in S that
lie in the path between and after the swap, then the subtree rooted at

is

Example 6.6 Figure 6.13 shows the relationship types in an ORA-SS source
schema that will be affected when object classes and are swapped. The
relationship type involves the ancestors of and/or All the object
classes of any such relationship type will remain in the same path after

and are swapped. However, the lowest participating object class of
may be changed, and Rule Swap2 will attach any attributes of to the

new lowest participating object class of in the view. In this way, the view
will not violate the semantics in the source schema and is valid. Note that the
relationship type does not involve descendants since the relationship
type will not be affected by the swap.

The relationship types and in Figure 6.13 involve object classes in
the branch paths of and involves and its child where
does not lie in the path between and while involves and
where lies in the path between and but does not. When and

are swapped, the subtrees rooted at and need to be attached to
so that the semantics of and remain intact, and the view obtained after
the swap is still valid.

Views 129

Figure 6.13. Handling relationship types that are affected by a swap operation.

Figure 6.14. Handling relationship types that involve the descendants of

Example 6.7 Figure 6.14 shows how relationship types that involve the de-
scendants of are handled after a swap operation. has two children,
namely and The relationship type involves and Since
is the lowest participating object class of after the swap, the subtree that is
rooted at remains attached to In contrast, the subtree that is rooted at

has two relationship types and Since is the lowest participating
object class among all the participating object classes in and after the
swap, the subtree that is rooted at is attached to

130

In general, if a relationship type does not involve any ancestors of but
only the descendants of then the subtree rooted at remains attached to

since is the lowest participating object class of R in the view. How-
ever, if R involve some ancestors of then the subtree rooted at will be
attached to the lowest participating object class of R in the view so that the
semantics of R remain intact.

Reversible Views
A valid view schema V of a source schema S is a reversible view if the

source schema is a valid view of V after the application of any of the view
operator, i.e., select, drop, join or swap).

If the original source schema can be obtained back by applying some op-
erators to a view, we say that the view is reversible. Among the four view
operators, it is obvious that the select and drop operators will not yield a re-
versible view. This is because some data will be lost in the view, and it is
impossible to recover the data back from the view. The join operator connects
two object classes together, and from the rules for the join operator, the source
data may not be lost in the view. However, we will need to introduce new oper-
ators to restore the referenced object class if we want the view to be reversible,
which is beyond the scope here. Finally, the swap operator interchanges two
object classes in the view which is reversible when another swap operation is
applied.

The following example illustrates the reversible view problem. It also shows
that an invalid view may be produced if we do not apply rules Swap3 and
Swap4.

Example 6.8 Suppose we have the source schema as shown in Figure 6.15,
and we want to design a view that swaps the object classes course and stu-
dent. Based on the rules Swap1 and Swap2, we first move the attributes of
the two object classes together with their owner object classes, and the rela-
tionship type cs’s attribute grade is attached to course, that is, the new lowest
participating object class of cs.

Note that the participating object classes in the relationship dc has to be
explicitly stated as dc(department, course), 2, 1:n, 1:1. This is because these
two object classes are not located next to each other in the path. There is an
object class student between them in the same path. If the participating object
classes of the relationship dc is not specified, the default participating object
classes will be student and course.

Figure 6.15 also has a relationship type called dcl that involves department,
course and lecturer. If we do not have Rule Swap3, then the object class
lecturer will be attached to student in the view and the relationship type dcl

Views 131

Figure 6.15. ORA-SS schema of course-student-lecturer

Figure 6.16. An invalid view of Figure 6.15 after swapping student and course

will be lost in the view (see Figure 6.16). Thus, all the distinct lecturers will
be repeatedly placed under each student in the corresponding XML view docu-
ments. Further, the attribute workload will become meaningless as it wrongly
becomes an attribute of lecturer in the view. The view in Figure 6.16 is invalid.

In order to obtain a valid view as shown in Figure 6.17, the object class
lecturer needs to move down with course to keep the semantics of the rela-
tionship type dcl intact. We also need to explicitly indicate the participating
object classes of dcl since they are not adjacent to each other in the view. The

132

Figure 6.17. A valid reversible view of Figure 6.15 after swapping student and course

meaning of the attribute workload is still the same as in the source schema,
that is, the workload of a lecturer under a given pair of course and department,

Note that we do not need to move the object class tutor up with student
although tutor and student are involved in the relationship type cst. This is
because, based on Rule Swap4, tutor needs to be attached to the lowest par-
ticpating object class of cst, i.e., course. Thus, the semantics of the ternary
relationship type cst remains unchanged and the resulting view in Figure 6.17
is valid and reversible.

Let us now apply another swap operator to the view in Figure 6.17 to swap
student and course. Applying the rules Swap1 and Swap2, the attributes of
student and course will move together with their owner object classes. The
relationship attribute grade is thus attached to the object class student again.
In addition, the object class lecturer will move up with course as a whole to
keep the semantics of the relationship type dcl intact (Rule Swap4). The view
obtained will be the same as the original source schema in Figure 6.15.

6.6 Design Rules for IDentifier Dependency Relationship
In the previous sections, we have presented the design rules when drop, join

and swap operations are applied in XML views. However, these rules are not
sufficient when the views contain IDD (IDentifier Dependency) relationship
types. An IDD relationship type is defined as follows:

Definition 6.1 An object class A is said to be ID dependent on its parent object
class B if A does not have an identifier, and an A object can be identified by its
parent’s identifier value (say k1) together with some of its own attributes (say

Views 133

Figure 6.18. ORA-SS schema containing an IDD relationship type

Figure 6.19. ORA-SS schema of a view that swaps employee and child

Figure 6.20. ORA-SS schema of a view that drops employee

k2). That is, the identifier of A is k1, k2. The relationship type between A and
B is then called IDD relationship type.

Example 6.9 Figure 6.18 shows an IDD relationship type between the object
class employee and child. The object class child does not have a identifier, but
can be identified by the identifier of employee, i.e., eno and its own attribute,
i.e., cname. Thus, we have

When we design a view over the IDD relationship type, additional rules are
needed to keep the view meaningful.

134

Based on Figure 6.18, we use the swap operation to design a view. Fig-
ure 6.19 shows that the object classes employee and child have been swapped.
Note that this view duplicates the identifier of employee, i.e., eno for the object
class child so that eno and cname combine to form an identifier for the object
class child. This is because the object class child cannot be identified without
eno. Note this view needs to be enforced with a constraint, which says the
eno under the object class child must be the same as the eno under the object
class employee. The straight line between the incoming edges of the attributes
eno and cname denotes that eno, cname is a composite identifier for the object
class child.

We can also design a view by applying the drop operation. Figure 6.20
depicts a view that drops the object class employee. In order to make the object
class child identifiable, the identifier of employee, i.e., eno is also combined
with the attribute cname to construct a identifier for the object class child.

A similar situation is obtained if a join operation is applied in a source
schema containing an IDD relationship type.

The above example shows that when we design a view that destroys an IDD
relationship type, the identifier of the parent object class of the IDD relation-
ship type should be added to the child object class to construct a identifier for
the child. The following additional rules specify how XML views should be
designed when IDD relationship types are involved.

Rule IDD. If an IDD relationship type is destroyed when some view operator
is applied, and the child object class of the IDD relationship type remains in
the view, then the identifier of the parent object class is added to the weak
identifier of the child object class to construct a identifier for the child object
class.

6.7 Example of Designing View
Finally, we will illustrate how a valid view can be designed by utilizing the

four view operators that we have discussed in the previous sections.

Example 6.10 Let us design a view based on the ORA-SS source schema
shown in Figure 6.21. The source schema shows a foreign key to key reference
from the object class project’ to project. There is also an IDD relationship type
between the object classes employee and child.

We first apply a join operator to join the object classes project’ and project.
Next, we apply a drop operator to drop the object class supplier. The view
obtained after applying these two operators is shown in Figure 6.22.

Next, we apply a swap operator to swap the object classes part and project’.
Since there is a relationship type between the object class part and factory, we
need to move factory down together with part (Rule Swap3) to ensure that the

Views 135

Figure 6.21. Example ORA-SS schema

Figure 6.22. View of Figure 6.21 obtained by a join and a drop operator

resulting view is reversible (see Figure 6.23). Note that the object classes part
and employee are not adjacent to each other in the view. Thus, we need to

136

Figure 6.23. View obtained by swapping part and project’ in Figure 6.22

explicitly indicate the two participating object classes for the relationship type
je.

Finally, we apply another swap operator to swap the object classes em-
ployee and child. From the Rule IDD, the attribute eno must be attached to the
object class child to construct an identifier for child. In addition, we also apply
a select operator to the attribute totalQty, i.e., “totalQty > 300”. This gives us
a view that retrieves the pairs of project and part in which the project uses a
total of more than 300 of the part. Figure 6.24 depicts the final view.

6.8 Related Work
Several prototype systems have been developed to support the design of

XML views. The Active View system [Abiteboul et al., 1999a] is built on top
of Ardent Software’s XML repository, which is based on the object-oriented
O2 system. In the Active Views system, a view is presented as an object, which
allows not only data, but also methods. The Active Views system uses XML
documents as its data model, which can only support views that apply selection

Views 137

Figure 6.24. View obtained by swapping employee and child in Figure 6.23

operations. Projection, join and swap operations may be applied, but there is
no guarantee that valid views are created.

MIX (Mediation of Information using XML) [Baru et al., 1999] is another
system that offers a virtual XML view on its underlying heterogeneous sources.
MIX utilizes DTD as its data model. Similar to XML document, XML DTD
cannot express necessary semantics for valid XML view design, and their
views can only support selection operations.

In contrast, our approach uses the ORA-SS data model to express both the
source and view schemas. This allows us to support a richer set of views com-
pared to Active Views and MIX. The Active Views system uses the Object
Query Language as a view definition language, and the Lorel language as its
query language over the views. This requires the users to be familiar with two
different languages. MIX develops its own XMAS language as the view defi-
nition language and query language. In contrast, our approach directly adopts
the W3C standard, XQuery as the query/view language over the views. A
view definition is differentiated from a query by its additional view declaration
clause before FLWR expression. Finally, both the Active Views system and
MIX system do not provide for the validation of views. As a consequence,

138

these two systems cannot guarantee valid XML views that apply projection,
join and swap operations.

6.9 Summary
In this paper, we have proposed a systematic approach for valid XML view

design. The approach is composed of three steps. The first step transforms an
XML document into an ORA-SS schema diagram. The second step enriches
the ORA-SS schema diagram with necessary semantics for valid XML views
design. The final step uses the proposed a set of rules to guide the design of
valid XML views. We have also presented rules to validate views.

Chapter 7

PHYSICAL DATABASE DESIGN

Until now, we have discussed the importance of designing good conceptual
schema for semistructured databases. In practice, physical database design is
the most important step when designing a schema since it affects the perfor-
mance of the database system, in particular, the evaluation of queries. [Ling
et al., 1996] advocates that logical and physical design steps should be inte-
grated to guide the design of more “efficient” schemas while maintaining the
integrity of the database.

One important aspect of physical database design is the controlled replica-
tion of data to provide more efficient data access. The benefit of replicating
data is that the speed of queries may improve. The disadvantage is that insert-
ing, deleting and maintaining data becomes more difficult, and that extra space
is required for the storage of the data.

This chapter first reviews the physical database design concepts in the re-
lational and hierarchical models. Then we will discuss how to apply related
concepts when designing the physical schemas for XML documents.

7.1 Relational Database Physical Design
The core of relational database theory is functional dependencies and nor-

malization. Normalization is a process that considers the functional depen-
dencies between attributes and decides which attributes belong together in a
relation. The result is a logical database design that is structurally consistent
and has minimal redundancy. However, a normalized database design may not
provide the optimal processing efficiency. This leads to the notion of denor-
malization whereby the relational schema is refined by introducing redundancy
in a controlled manner to improve the performance of the database system.

Many steps can be taken in the physical design of relational databases.
These include adding redundant columns, adding derived columns, collapsing

140

tables, splitting tables both horizontally and vertically. However, the amount
of redundancy, if not controlled, will lead to potential inconsistency or update
anomalies. To overcome the problem of update anomalies, [Ling et al., 1996]
extended classical functional dependencies (FDs) to include strong FDs.

An FD in a relation R is a strong FD, denoted by if all the
attributes in Y will not be updates, or if the update need not be performed in
real-time or online.

For example, the FDs code title and stuNo name are strong FDs.
Based on the notion of strong FD, [Ling et al., 1996] defined replicated

3NF, which allows some redundancies in a relation scheme so that the perfor-
mance of the database system is improved while ensuring that the integrity of
the database is not compromised due to various updating anomalies. This is
accomplished by ensuring that

1

2

Only attributes that are rarely updated or attributes that can be updated off-
line are duplicated. This is enforced by the definition of the strong FD.

Insertion, deletion, and updating anomalies cannot occur by adhering to a
strict updating policy which will validate the updates against the primary
instance of the attribute.

Definition 7.1 [Ling et al., 1996] Let be a relational
database schema and let be the set of attributes in for A
relation schema is said to be in replicated 3NF if:

1 For each X is not a key of

Case 1: If X is not a role name of the key of then there exists a unique
such that X is a key of and is said to

be the primary instance of with respect to the attributes in

Case 2: If X is a role name of the key of and Y is a role name of some
attribute in

2 Let X is not a key of and B is non-
prime}; the relation schema obtained from after removing all attributes
in is in 3NF.

Example 7.1 Consider the following database schema where the keys of the
relations are underlined:

Physical Database Design 141

The relation SUPPLY is not in Codd 3NF (in fact, it is not in 2NF) because
we have sno sname but sname is non-prime and sno is not a candidate
key, and sname is not fully functionally dependent on the key {sno,pno} of
the SUPPLY relation. However, it is in replicated 3NF by Definition 1 since:

1 we have sno sname and pno pname as we do not or seldom change
the names of suppliers and the names of parts. By Case 1 of Definition 1,
SUPPLIER and PART are the primary instances of SUPPLY with respect
to the attribute sets {sno, sname} and {pno, pname} respectively; and

2 and the relation schema obtained by removing the
attributes sname and pname from SUPPLY is in Codd 3NF.

The replicated normal form provides for inclusion of redundancies in a rela-
tion scheme so that the operational efficiency of the database can be enhanced
while ensuring that the integrity of the database is not compromised due to
various updating anomalies.

This is achieved by ensuring that only attributes that are rarely updated or
attributes that can be updated off-line are duplicated. This is enforced by the
definition of a strong FD and the second condition of Definition 1.

Therefore, in our example scheme, we need to enforce the following inclu-
sion dependencies:

The strong FD and replicated 3NF provides the link between the logical
and physical database design steps by allowing the database designer to make
more informed decisions about how the physical database can be structured (by
adding redundant attributes) without compromising the data integrity achieved
during the logical design step while giving better retrieval performance.

7.2 IMS Database Physical Design
Pre-relational database systems such as the IBM’s Information Management

System or IMS [Date, 1975] is based on the hierarchical model. A student that
takes a set of courses will be modeled in an IMS hierarchy in which student
“parent segments” have subordinate course “child segments” (see Figure 7.1).
Such hierarchies are efficient to answer queries such as “Retrieve the courses
taken by some student John”.

However this design leads to redundancy in the course segments. Informa-
tion on a course that is taken by many students will be repeated. In order to
remove redundant data in the course segments, IMS uses logical parent point-

142

Figure 7.1. Database design using IMS

Figure 7.2. Using logical parent pointers to remove redundancy

ers (see Figure 7.2). Still, they are not suited for queries such as “Retrieve the
students enrolled in the database course cs2102”.

The main issue here is the lack of symmetry in hierarchies. This becomes
problematic when we need to represent many to many relationships. The IMS
database system has built-in functions to provide a symmetric view on the hier-
archical structure of data, which reduces unnecessary redundancy and enforces
consistency of data.

IMS offers physical pairings. Physical pairing involves introducing a new
segment called COURSEGRADE that is a physical child of COURSE and a
logical child of STUDENT (see Figure 7.3). The segments COURSEGRADE
and STUDENTGRADE are “paired segments” which are declared to the IMS
system.

Note that physical pairing requires the redundant storage of the intersect-
ing data. However, since the segments are paired, when the user inserts an

Physical Database Design 143

Figure 7.3. Physical pairing in IMS

occurrence of either one, IMS will automatically create the corresponding oc-
currence of the other.

7.3 Redundancy in ORA-SS Schema Diagram
We now examine the different kinds of data redundancy that can be present

in documents based on XML schemas. Some forms of redundancy are desir-
able while other are not.

1 Data redundancy occurs in an instance if there is a many to many relation-
ship type, and the participating child object class has attributes.

Consider a schema where the courses that a student is enrolled in are nested
within student, as shown in Figure 7.4. Every time an instance of course is
repeated, the values of the attributes of that course are repeated. Although
this kind of redundancy is usually described as undesirable, it is not always
necessary to remove this kind of redundancy. The advantage of this redun-
dancy is that it can improve the retrieval performance, and it can be retained
if the storage space that the duplicated data takes up is small and if the data
that is replicated is not going to be updated often.

2 Data redundancy occurs if data is replicated to handle symmetric queries.

Consider an XML document that describes the courses that students are
enrolled in. There are many ways to organize this data. A schema that is
suitable for answering queries about courses that a student is enrolled in,
and also queries about students enrolled in a course is shown in Figure 7.5.
This schema is suitable for symmetric queries. The relationship types cs
and sc represent the same real world relationship, namely the relationship
between students and courses, but this information is duplicated in the hier-
archical storage structure. Duplicating this information is a disadvantage,
but it is duplicated only once.

144

Figure 7.4. Many to many relationship type

Figure 7.5. Symmetric relationship type

3 Data redundancy occurs in an instance if a relationship type is nested under
an many to many relationship type in the semistructured (or hierarchical)
schema.

Consider an example with three object classes project, member and pub-
lication, and binary relationship types representing members belonging to
projects, and publications belonging to members. A member can be in-
volved in one or more projects. If this is modeled with member as a subele-
ment of project, and publication as a subelement of member then the same
set of publications will be duplicated for each project the member is in-
volved in. See Figure 7.6. This kind of redundancy is undesirable, but
ternary relationships are often represented this way in models that are un-
able to represent n-ary relationships

4 Data redundancy occurs in an instance if an attribute(s) is replicated.

Duplicating attributes is appropriate if the value of the attribute is unlikely
to change, and the duplication of the information improves the performance
of a query. Consider the schema in Figure 7.5, where the attribute grade is
duplicated. Once a grade is awarded to a student in a course, it is unlikely

Physical Database Design 145

Figure 7.6. Relationship type nested under many to many relationship type

to change. If instead of replicating the attribute grade, the information is
stored only once for relationship type sc but not for relationship type cs,
the performance of a query that lists the course code and grade for every
course for each student does not change, but the performance of a query
that lists the students and grades for every course is slower.

5 Data redundancy occurs in an instance if a derived attribute is precomputed
and stored or an aggregate function is precomputed and stored.

In Figure 7.7 the value for grade is derived from the attribute mark while the
attribute average(mark) is an aggregate capturing the average mark for each
student. Storing the precomputed grade and average(mark) improves the
performance of queries that involve these attributes, while possibly degrad-
ing the speed of updates.

6 Data redundancy occurs if data is replicated to handle recursive queries.

The relationship types between subordinates and their manager where sub-
ordinate and manager are modeled as staff is shown in Figure 7.8(a). This
schema is suitable for queries that ask who is the manager of a particular
subordinate, but unsuitable for a query that asks for the subordinates of a
particular manager. The schema in Figure 7.8(b) with the duplicated ref-
erence is suitable for both types of query. To improve performance it is
appropriate to include an extra reference.

7 Data redundancy occurs in the data instance if the same object class or ob-
ject classes occur in different relationship types.

146

Figure 7.7. Precomputed derived and aggregate attributes

Figure 7.8. Replication of references for recursive query

Consider an XML document that describes people’s roles in a University.
One part of the document may contain information about projects that staff
members work on, while another part may contain information about de-
partments that staff members work in. Parts of the ORA-SS schema dia-
gram are shown in Figure 7.9. The advantage of duplicating the information
as shown is the performance of retrieval of the data, while the disadvantage
is in maintaining the consistency of the copies.

7.4 Replicated NF in ORA-SS
To define when some replication is desirable in ORA-SS schemas we use

concepts analogous to strong functional dependencies and replicated 3NF in
relational databases, which are reviewed in Section 7.1. The intuition that we
capture is that if an attribute is seldom changed then its replication will not
cause any update anomalies.

Physical Database Design 147

Figure 7.9. Duplication of staff information in document

Consider the following example. The schema in Figure 7.10(a) has ob-
ject classes course, student and tutor. This schema is not an NF ORA-SS
schema, since both cs and cst are many to many relationship types. The cor-
responding NF ORA-SS schema diagram is shown in Figure 7.10(b). If the
data is stored using the NF ORA-SS schema, then to answer the query listing
the names of all the students taking “CS1102” involves following a reference,
which is slower than calculating the parent/child relationship. Since the name
of a student does not change often, there is little overhead in replicating the
name. The overhead is the extra space taken.

To define this kind of replication more formally we need to define a new
kind of normal form, which we call replicated NF ORA-SS schema diagrams.

Definition 7.2 Let X be an attribute. Attribute X could be single-valued or
multivalued, and it could be an attribute of an object class or a relationship
type. We say that X is a relatively stable attribute if the value of X will not
be updated, or if the update need not be performed in real-time.

For example, the attribute title of object class course, and name of object
class student are not likely to be updated often and any update does not need
to happen in real-time. Thus, we say that these attributes are relatively stable
attributes.

Definition 7.3 Let R be a relationship type with participating object classes
We say that a relationship type R is a relatively stable relation-

148

Physical Database Design 149

Figure 7.11. Replicated NF ORA-SS schema diagram with allowed replication of relatively
stable attributes, name and birthdate

ship type if the objects participating in the relationships do not change, or if
the changes need not be performed in real-time.

For example, the relationship type spouse and the part-subpart relationship
types whose participating objects change infrequently are relatively stable re-
lationship types.

Definition 7.4 Let D be an ORA-SS schema diagram. Let be a copy of D
where the relatively stable attributes and relatively stable relationship types
and their participating object classes have been omitted. We say that an ORA-
SS schema diagram D is a replicated NF ORA-SS schema, if the ORA-SS
schema diagram D is an NF ORA-SS schema diagram.

Consider again the ORA-SS schema diagram in Figure 7.10(b). The at-
tributes name and birthdate of student, and name of tutor are unlikely to
change so they are relatively stable attributes. The attribute hobby of tutor
is likely to change, and is not a relatively stable attribute. In the schema in
Figure 7.11 the relatively stable attributes are replicated. If the replicated at-
tributes are removed, that is, name and birthdate from stuRef, and name
from tutorRef, then the resulting schema is the same as the NF ORA-SS
schema diagram in Figure 7.10(b). Hence, the ORA-SS schema diagram in
Figure 7.11 is a replicated NF ORA-SS schema diagram.

Replicated NF ORA-SS schema diagrams have the advantage that certain
class of queries will execute faster. Update, insertion and deletion anomalies

150

Figure 7.12. NF ORA-SS Schema Diagram

Figure 7.13. Symmetric relationship type

will not occur as long as strict updating policies are adhered to, which validate
the updates against the primary instance of the attributes and relationships.

7.5 Controlled Pairing in ORA-SS Schema Diagrams
The replication of references can be used to improve the speed of a query.

In this section we describe different ways of modeling this replication in a
controlled way.

Although the schema in Figure 7.12 is an NF ORA-SS schema diagram,
it is not suited to queries such as “List the students enrolled in the database
course CS1102 with their grade”. In order to answer such queries we replicate
the reference between student and course, and the attribute grade, as shown in
Figure 7.13.

One problem with replicating the grade is that controls must be put in place
to ensure whenever a grade is inserted, deleted or updated in one place, the
same operation is applied to the copy.

The schema shown in Figure 7.12 is similar to the logical parent pointer
example in Section 7.2, while the schema in Figure 7.13 is similar to the phys-
ical pairing example in Section 7.2. In IMS, these pairings are declared and
maintained automatically by the database system but in other database systems
appropriate controls must be put in place to ensure that strict updating policies
are adhered to.

Physical Database Design 151

An example of pairing, which can be controlled that does not fit the pairing
model of IMS, has a binary relationship type that is replicated in a ternary
relationship type in order to improve the speed of queries. Consider the binary
and ternary relationship represented in Figures 7.14(a) together with (b). The
code is a number that a supplier uses for a part, which is specific to a supplier.
For example, for a part with description “18 inch bicycle frame”, one supplier
might use the code while another supplier uses the code “bicycle –
2096”. The schema shown in Figures 7.14(a) together with (b) is suitable for
queries such as:

List the sName of the suppliers who supply parts with description “18 inch
bicycle frame ” to project

List the code used by each supplier of the part with description “18 inch
bicycle frame ”.

The first query can be answered by accessing the sName, part description
and in Figure 7.14(b). The second query can be answered by accessing
the code and part description in Figure 7.14(a).
However, this schema is unsuitable for the query:

List the code used by each supplier of the part with description “18 inch
bicycle frame ” supplied to project

In order to answer this query, it is necessary to find who the suppliers are of the
part with description “18 inch bicycle frame ” to project from Figure 7.14(b)
then access the code information in Figure 7.14(a).

An alternative organization is shown in Figures 7.14(a) together with (c).
This organization improves the performance of the query given above since
the attributes can all be accessed in Figure 7.14(c). The duplication of the at-
tribute code is possible since the value of the attribute is unlikely to change.
Previously we have shown how duplication can be avoided through the use
of references. The schema in Figures 7.14(a) together with (c) is an example
where references cannot be used. It is possible to include a reference between
part2 and part but it is not possible to include a reference between supplier2
and supplier since there will be many supplier objects with the same sNo.
Strict updating policies must be put in place and adhered to in order to main-
tain the consistency of the replicated data. For example, if the XML document
that conforms to the schema in Figure 7.14(a) together with (c) is stored in
an object relational database, then consistency of the replicated data can be
achieved by enforcing the following inclusion dependencies. We describe a
mapping from an ORA-SS schema diagram to an object relational database in
Section 7.8.

152

Physical Database Design 153

7.6 Measure of Data Replication
As with relational databases, a normalized XML schema design may not

provide optimal efficiency. The example below demonstrates how the ORA-
SS data model can be used to estimate the cost of replicating data.

Consider the ORA-SS schema diagram in Figure 7.15 that shows the object
classes student and course. A student can take 3 to 8 courses and a course
can have 5 to 800 students. A course has a code, title, description, and assess-
ment. The assessment is a multivalued composite attribute that comprises of
component and its weighting. For example, the practical component can have
a weighting of 20%, the test component can have a weighting of 10%, and the
exam component can have a weighting of 70%.

Let us assume that

number of students = 20000

number of courses = 500

length of code = 10 bytes

length of title = 50 bytes

length of description = 1000 bytes

length of component = 20 bytes

length of weighting = 4 bytes

length of grade = 2 bytes

length of reference = 10 bytes

The length of each assessment is given by the length of component and
weighting = 20 + 4 bytes = 24 bytes. Since we have 3 types of assessment,
namely, practical, test, and exam, this attribute occupies a total of 72 bytes.
With these information, we can estimate the storage and update cost of model-
ing data in a particular way.

Let us consider the storage requirements for the course elements. In the
schema in Figure 7.15(a), each course is repeated for each student taking the
course, which means that the details of each course is stored a minimum of
5 times and a maximum of 800 times (based on the participation constraint

154

5 : 800). Since the size of each course is at least 10+50+1000+72+2=1134
bytes, the minimum storage requirement is approximately 5*500*1134=2.835
MB, and the maximum storage needed is approximately 800*500*1134=453.6
MB.

On the other hand, if we use a reference pointer to course as shown in Fig-
ure 7.15(b), then the size of course_Ref is 10+2=12 bytes and the size of course
(without the grade) is 1132 bytes, and each course is represented only once,
so the maximum storage needs for course is 1*500*1132=0.566 MB and the
minimum storage requirement for course_Ref is 5*500*12=0.03 MB and the
maximum storage requirement for course_Ref is 800*500*12 = 4.8 MB. The
minimum storage requirement of the course information in the schema in Fig-
ure 7.15(b) is about 20% of the minimum storage requirement of the course
information in Figure 7.15(a), while the maximum storage requirement of the
course information in the schema in Figure 7.15(b) is about 1% of the maxi-
mum storage requirement of the course information in Figure 7.15(a).

Next, let us consider the update cost. Suppose a lecturer updates the assess-
ment requirements in a course. Based on the schema in Figure 7.15(a), this
would involve updating between 5 and 800 course instances. However, only
one instance of course need to be updated for the schema in Figure 7.15(b).
The problem is not only the cost of updating but also ensuring that the assess-
ment requirements are updated everywhere they need to be.

Finally, let us examine the cost of performing a query. Traditionally, it is
believed that the cost of following a reference is more expensive because of
the way data is organized on disk (i.e., one more disk access).

Assume for the moment that we have no indexes, and that a report is fre-
quently printed with stuNo, sname, code, title, grade. The schema in Fig-
ure 7.15(a) is suitable for answering this query, while the schema in Fig-
ure 7.15(b) would require extra disk accesses. However storing the title un-
der course_Re f improves performance while not taking a large hit on storage,
and assuming that a course title does not change, no hit on updating. However,
if the query included the description, it is unlikely that the replication of the
description is worthwhile since each description is 1000 bytes.

7.7 Guidelines for Physical Semistructured Database
Design

We have discussed the different kinds of replication that can occur in semistruc-
tured databases, the kinds of replication that can be controlled, how the replica-
tion can be managed, and the cost of allowing such replication. In this section
we present how this information can be used in the design of database systems
for semistructured data.

The steps are similar to the steps followed in relational database design,
where requirements are gathered, the schema is normalized, and after the ex-

Physical Database Design 155

156

pected query set is taken into account, some denormalization takes place. We
first describe the design process for semistructured databases, then illustrate
the process with an example.

The guideline for the design of a semistructured database follows.

Step 1. An ORA-SS schema is derived either from real world
requirements, or extracted from XML documents via an ORA-SS
instance diagram.

Step 2. The ORA-SS schema diagram is normalized to a NF ORA-SS
schema diagram.

Step 3. A set of suggested replications is derived from the expected
query set.

Step 4. For each suggested replication that involves relatively
stable attributes or relatively stable relationship types, consider the
storage cost required for the replication. It is not necessary to consider
update cost since relatively stable attributes and relationship types do
not change often.

Step 5. For the other suggested replications, consider both the
storage and update cost of the replication.

Step 6. For all replications ensure that the necessary controls are
put in place to maintain the integrity of the data. For example, for
relatively stable attributes and relationship types, it is necessary to
enforce that replicated data is consistent when the data is inserted.
For the pairing required for symmetric queries, a reference is
duplicated. The consistency of this duplication must be enforced when
information is inserted, deleted or updated. In this case, the
performance of the consistency checking is predictable since the
references are duplicated only once.

The following example illustrates the guidelines described above.

Step 1. The ORA-SS schema diagram in Figure 7.15(a) captures the real world
constraints that are to be modeled. Designing a database based on this schema
leads to redundancies in the instance of the database, which in turn leads to
insertion, deletion and update anomalies.

Step 2. Using the algorithm in Chapter 5, the schema is normalized. The re-
sulting NF ORA-SS schema diagram is shown in Figure 7.15(b).

Physical Database Design 157

Figure 7.16. Resulting ORA-SS Schema with controlled replication

Step 3. The following queries are frequently asked:
Query 1: list the name and grade of students taking the course with

code CS1102, along with the title of the course

Query 2: list the title of the courses taken by student with stuNo
stu125 along with the grade the student has scored in each course.

The schema in Figure 7.15(b) is suitable for a query that asks for the grades of
courses taken by student with stuNo stu125, but if the query also asks for the
title of the course (as in Query 2), a reference is followed slowing the perfor-
mance. The performance of Query 2 will improve if title is replicated under
course_Ref. The schema in Figure 7.15(b) is not suitable for Query 1 since
each student object must be read, and the code of the courses the student is
enrolled in must be inspected. The performance of this query is improved if a
reference is added between course and student, pairing the reference from stu-
dent to course. In order to improve the performance of this query further, the
title of the course can be stored as an attribute of course_Ref. The suggested
replication is shown in Figure 7.16. The name of the student and the title of
the course are relatively stable attributes.

Step 4. We now calculate the extra maximum storage cost between Figure 7.15(b)
and Figure 7.16, based on the following information:

number of students = 20000

number of courses = 500

length of title = 50 bytes

length of sname = 30 bytes

length of grade = 2 bytes

length of reference =10 bytes

158

The maximum storage required for the replication of

sname is

title is

grade for the relationship type is

the reference from s tu_Ref to student is

The maximum amount of extra storage required is
MB which is ten times more than the maximum storage requirement for the
schema in Figure 7.15(b).

Step 5. We now calculate the update cost of the new schema. We do not
consider the update cost of relatively stable attributes, such as title of course
and sname of student, since by definition they are unlikely to be updated. So
the only extra update cost incurred is the cost of maintaining the student grade.
Whenever the value of a grade of relationship type is updated, the value of
a grade attribute of relationship type will also need to be updated. Because
the grade is replicated only once, the update cost is doubled. Similarly, when
students withdraw and add courses, because the reference is replicated only
once, the update cost is doubled.

The costs of performing the queries in the expected query set have de-
creased. The addition of the attribute title to object class course_Ref im-
proves the performance of Query 2. The addition of object class stu_Ref with
attribute sname and the relationship type attribute grade improves the perfor-
mance of Query 1. The addition of the extra reference improves any ad hoc
queries that ask about students within courses.

Step 6. It is important that dependencies between the data are defined and the
necessary controls are put in place to maintain the consistency of the repli-
cated data automatically. For example, whenever a grade of the relationship
type is updated, the corresponding grade of relationship type must also
be updated. Similarly when a student enrolls in a course, a reference must
be included to indicate the courses the student has enrolled in, the replicated
reference must be introduced, and the student’s sname must be updated in
stu_Ref.

7.8 Storage of Documents in an Object Relational
Database

In order to design an efficient organization of data in a data store, it is essen-
tial to have an algorithm that maps the logical data model to the data store. In

cs

cs

sc

sc

Physical Database Design 159

Figure 7.17. Mapping ORA-SS Schema Diagram to object relational model

this section, we outline an algorithm that maps ORA-SS schema diagrams to
the object relational model. The algorithm demonstrates how semistructured
data can efficiently and consistently be stored in an object relational database
management system like Oracle

Figure 7.17 shows an ORA-SS schema diagram and the associated object
relational schema. The latter can be obtained by the following mapping algo-
rithm:

1 for each object class, create a (possibly nested) relation where the identifier
of the object class is the key of the relation. Each single-valued attribute of
the object class becomes a single-valued attribute of the relation, while each
multivalued attribute becomes a set-valued attribute (i.e. nested relation) in
the relation. Each reference is a foreign key in the relation.

2 for each relationship type, create a (possibly nested) relation where all the
identifiers of the participating object classes of the relationship type are
single-valued attributes of the relation. If the identifiers of form
the key of the relationship type then the identifiers of form the
key of the relation created. Each single-valued attribute of the relation-
ship type is a single-valued attribute of the relation, and each multivalued
attribute is a set-valued attribute (i.e. nested relation) in the relation.

Note that the ORA-SS schema diagram enables the mapping algorithm to
correctly associate the attribute price with part and supplier in the relation,
and the attribute quantity with project, part and supplier in the relation.

ps
jps

160

7.9 Summary
While the process of transforming an ORA-SS schema diagram to an NF

ORA-SS schema diagram can lead to databases that have no replicated data
which in turn leads to a reduction in anomalies, the addition of references may
adversely degrade the performance of queries on the database.

In this chapter, we have addressed how replication can be added back into a
schema in a controlled manner in order to improve the performance of queries
that are frequently asked. We have reviewed how attributes that seldom change
are dealt with in relational databases, and how pairings are maintained auto-
matically in hierarchical IMS databases for answering symmetric queries effi-
ciently.

We have described the kinds of replication that can arise in semistructured
databases, and how the replication of relatively stable attributes and relation-
ship types can be added, and how pairings between object classes can be main-
tained. These concepts have roots in the approaches taken by relational and
IMS databases to deal with replication and answering symmetric queries re-
spectively. The costs incurred in the replication of data in semistructured
databases include the storage cost, the update cost and the performance cost.
Recognizing that some attributes and relationship types are relatively stable
gives a more realistic picture of the update cost.

Guidelines for semistructured database design are introduced and demon-
strated, from requirements gathering, through conceptual modeling to physical
modeling. Finally, we have outlined an algorithm for storing XML documents
efficiently and consistently in a traditional database system.

Chapter 8

CONCLUSION

Web applications typically deal with data that is semistructured. With the
increased number of web applications, and the increasing amount of data that
is produced and consumed by these applications, there is a need for processes
that are guaranteed to maintain the consistency of the data. One such process
is the design of a data repository that manages semistructured data.

The steps in the design of a repository for semistructured data are as follows:

1 Choose a data model that is able to represent the semantics necessary for
modeling semistructured data,

2 Capture the semantics of the data that will be stored, either by:

(a) extracting the schema from a set of documents and discovering the se-
mantics in a data model, or

(b) studying the constraints in the real world and capturing them in a data
model,

3

4

5

Reorganize the schema into an NF ORA-SS schema diagram to avoid repli-
cation of data in the XML documents,

Consider the typical query set and reorganize the schema to improve the
performance of typical queries, perhaps by introducing controlled replica-
tion of data,

Consider the users of the system and define views over the data for individ-
ual users or groups of users.

These steps are outlined in Figure 8.1, and the chapters in the book that
correspond to the steps are highlighted with each step.

162

Figure 8.1. Steps in the Design of Repositories for Semistructured Data

Because of the rich semantics that can be represented in the ORA-SS data
model, it can be used as the foundation for other work in the semistructured
data field. We list some further possibilities here:

We have discussed how the ORA-SS data model can be used to recognize
if there is redundancy in a semistructured data repository. Hence, further
normal forms for semistructured data and the underlying theory could be
defined based on the ORA-SS data model. The ORA-SS instance diagram
can also be used to capture how the instance of the data needs to change
after the schema has been restructured.

We have shown how semistructured data and XML data can be mapped to
the object relational data model. More work needs to be done to design
efficient storage organizations for other data models (such as the object
oriented and relational data models) with indexes based on the ORA-SS
schema.

Conclusion 163

The ORA-SS data model can be used to identify which views are mean-
ingful. This work can be extended to define how materialized views are
updated, what updates to views are valid, and how updates to views are
propagated to the underlying data.

Query optimization involves rewriting queries into a form that will execute
faster than the original query. Semantic query optimization involves rewrit-
ing the query based on the semantics of the data to improve query perfor-
mance. The ORA-SS schema diagram can provide the necessary semantics,
and could be used for semantic query optimization in semi structured data
repositories.

The ORA-SS data model provides a user-friendly way to visualize the in-
stance and schema of a semistructured data store, and can be used in tools
that require data visualization. Preliminary work in this area is presented
in [Ni and Ling, 2003].

The ORA-SS data model provides a simple and standard way for represent-
ing semantics which can be used for data integration. A large part of data
integration involves finding equivalences or matches between two or more
schema. The problem of finding equivalences of object classes, relation-
ship types and attributes between diagrams is very complex. It is easier to
find equivalences automatically or semi-automatically with a good under-
standing of the underlying semantics of the data.

Appendix A
ORA-SS Notation

The following tables summarize the notation of ORA-SS diagrams.
notation description

object class with name

attribute where represents the cardinality, ? is 0 or 1 ,
+ is 1 or more, * is 0 or more, and the default value for

is 1.

attribute where the ordering of the value of the at-
tributes is important. is either + or *, and the default
value is *.

composite attribute with component attributes and

disjunctive attribute is either or

identifier/primary key

candidate key

166

notation description

composite identifier/primary key

composite candidate key

derived attribute

attribute with unknown structure or whose structure is
heterogeneous

the ordering on the attributes of object class is impor-
tant

relationship type with name R, with participating objects
object class list, of degree where the participation of
the parent has minimum and maximum and the child
has minimum and maximum and the ordering of the
object classes is important. The name is optional. The
object class list is optional and is included only if the
object classes of the relationship type are separated by
object class(es) not relevant to the relationship type. The
default degree is 2, default parent participation constraint
is default child participation constraint is
and default on ordering is no ordering.

attribute belongs to relationship type R. The default
(without label R on the edge) shows that attribute be-
longs to object class

APPENDIX A: ORA-SS Notation 167

notation description

reference object class references referenced object
class with identifier bID

disjunctive relationship type: either object class or ob-
ject class

weak object class: attribute is a weak identifier

inherits from (inheritance diagram)

References

Abiteboul, S. (1999). On views and XML. In Proceedings of 18th ACM Symposium on Princi-
ples of Database Systems.

Abiteboul, S., Amann, B., Cluet, S., Eyal, A., Mignet, L., and Milo, T. (1999a). Active views for
electronic commerce. In Proceedings of 25th International Conference on Very Large Data
Bases.

Abiteboul, S., Buneman, P., and Suciu, D. (1999b). Data On the Web-From Relational to Semistruc-
tured Data and XML. Morgan Kaufman Publishers, San Francisco, California.

Apparao, V. and Byrne, S. (1 October 1998). Document object model (DOM) level 1 specifica-
tion. W3C Recommendation.

Arenas, M. and Libkin, L. (2004). A normal form for XML documents. ACM Trans. Database
Syst., 29(1):195–232.

Baru, C. K., Gupta, A., Ludascher, B., Marciano, R., Papakonstantinou, Y., Velikhov, P., and
Chu, V. (1999). XML-based information mediation with MIX. In SIGMOD 1999, Proceed-
ings ACM SIGMOD International Conference on Management of Data.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (Oct. 2000). Extensible markup language
(XML) 1.0. 2nd edition. http://www.w3.org/TR/REC-xml.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W.C. (2001a). Keys for XML. In Pro-
ceedings of the Tenth International World Wide Web Conference.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W.C. (2001b). Reasoning about keys for
XML. In International Workshop on Database Programming Languages.

Carey, M. J., Kiernan, J., Shanmugasundaram, J., Shekita, E. J., and Subramanian, S. N. (2000).
Xperanto: Middleware for publishing object-relational data as XML documents. In Proceed-
ings of 26th International Conference on Very Large Data Bases, pages 646–648.

Chen, Y.B., Ling, T.W., and Lee, M.L. (2002). Designing valid XML views. In Proceedings of
21st International Conference on Conceptual Modeling.

Christophides, V., Cluet, S., and (2000). On wrapping query languages and efficient
XML integration. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, pages 141–152.

Cluet, S., Veltri, P., and Vodislav, D. (2001). Views in a large scale XML repository. In Proceed-
ings of 27th International Conference on Very Large Data Bases, pages 271–280.

Date, C. J. (1975). An Introduction to Database Systems. Addison Wesley, 1st edition.
Deutsch, A., Fernandez, M., and Suciu, D. (1999). Storing semistructured data with STORED.

In ACM SIGMOD, pages 431–442.

170

Deutsch, A. and Tannen, V. (2003). Mars: A system for publishing xml from mixed and redun-
dant storag e. In VLDB.

Dobbie, G., Wu, X., Ling, T.W., and Lee, M.L. (2000). ORA-SS: An object-relationship-attribute
model for semi-structured data. Technical Report TR21/00, School of Computing, National
University of Singapore.

Embley, D.W. and Mok, W.Y. (2001). Developing XML documents with guaranteed “good”
properties. In Proc. of 20th International Conference on Conceptual Modeling.

Fan, W. and (2000). Integrity Constraints for XML. In Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-S1GART Symposium on Principles of Database Systems, Dallas,
Texas, USA, pages 23–34. ACM.

Fernandez, M., Tan, W., and Suciu, D. (2000). SilkRoute: Trading between relations and XML.
In Proceedings of the 9th International World Wide Web Conference.

Florescu, D. and Kossmann, D. (1999). Storing and querying XML data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3):27–34.

Goldman, R. and Widom, J. (1997). Dataguides: Enabling query formulation and optimization
in semistructured databases. In Proc. of 23rd International Conference on Very Large Data
Bases, pages 436–445.

ISO/IEC (2000). Information technology - text and office systems - regular language description
for XML (RELAX) - part 1: RELAX core. DTR 22250-1.

Lee, D. and Chu, W. (2000). Constraints-preserving transformation from XML document type
definition to relational schema. In Proc. 19th International Conference on Conceptual Mod-
eling, pages 323–338.

Lee, S.Y., Lee, M.L., Ling, T.W., and Kalinichenko, L.A. (1999). Designing good semi-structured
databases. In Proc. 18th International Conference on Conceptual Modeling, pages 131–145.

Ling, T. W. (1989). A normal form for sets of not-necessarily normalized relations. In Proceed-
ings of the 22nd Hawaii International Conference on System Sciences, pages 578–586. IEEE
Computer Society Press.

Ling, T. W. and Yan, L. L. (1994). NF-NR: A practical normal form for nested relations. Journal
of Systems Integration, 4:309–340.

Ling, T.W. (1985). A normal form for entity-relationship diagrams. In Proc. 4th International
Conference on Entity-Relationship Approach.

Ling, T.W., Goh, C.H., and Lee, M.L. (1996). Extending classical functional dependencies for
physical database design. Information and Software Technology, 38:601–608.

Ling, T.W. and Teo, P.K. (1993). Inheritance conflicts in object-oriented systems. In Proc. 4th
International Conference on Database and Expert Systems Applications, DEXA ’93, pages
189–200.

Mani, M., Lee, D., and Muntz, R.R. (2001). Semantic data modeling using XML schemas. In
Proc. of 20th International Conference on Conceptual Modeling, pages 149–163.

Manolescu, I., Florescu, D., and Kossmann, D. (2001). Answering XML queries on heteroge-
neous data sources. In Proceedings of 27th International Conference on Very Large Data
Bases, pages 241–250.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J. (1997). Lore: A database
management system for semistructured data. SIGMOD Record, 26(3):54–66.

Mo, Y. and Ling, T.W. (2002). Storing and maintaining semistructured data efficiently in an
object-relational database. In Proc. of 3rd International Conference on Web Information
Systems Engineering (WISE 2002), pages 247–256.

Ni, W. and Ling, T.W. (2003). GLASS: A graphical query language for semi-structured data. In
Proc. of Eighth International Conference on Database Systems for Advanced Applications
(DASFAA ’03).

REFERENCES 171

Ozsoyoglu, Z.M. and Yuan, L.Y. (1987). A new normal form for nested relations. ACM Trans-
action on Database Systems, 12(1).

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., and Naughton, J.F. (1999).
Relational databases for querying XML documents: Limitations and opportunities. In Proc.
of 25th International Conference on Very Large Data Bases, pages 79–90.

Suciu, D. (1998). Semistructured data and XML. In Proc, of 5th International Conference on
Foundations of Data Organization.

Thompson, H.S., Beech, D., Maloney, M., and (Eds), N. Mendelson (May 2001). XML Schema
Part 1: Structures. http://www.w3.org/TR/xmlscheina-l.

Wang, Q.Y., Xu, J.X., and Wong, K.F. (2000). Approximate graph schema extraction for semistruc-
tured data. In Proc. of 7th International Conference on Extending Database Technology.

Widom, J. (1999). Data management for XML: Research directions. IEEE Data Engineering
Bulletin, 22(3):44–52.

Wu, X., Ling, T.W., Lee, M.L., and Dobbie, G. (2001a). Designing semistructured databases
using ORA-SS model. In Proc. of 2nd International Conference on Web Information Systems
Engineering.

Wu, X.Y., Ling, T.W., Lee, S.Y., Lee, M.L., and Dobbie, G. (November 2001b). NF-SS: A
normal form for semistructured schemata. In Proceedings of the International Workshop on
Data Semantics in Web Information Systems (DASWIS/ER2001). Springer-Verlag.

Index

ANY, 44
Active View, 5, 111, 136
Aggregate, 145
Agora, 5
Attribute of object class, 43
Attribute of relationship type, 44
Attribute, 43–45
Binary relationship type, 38–39
CM Hypergraph, 3, 18–19, 21, 35
Candidate identifier, 44
Composite attribute, 44, 60, 64, 85
Composite candidate identifier, 44
Composite identifier, 44
DOM, 3, 12, 14,34
DTD, 4, 8–12,34
Data model, 3
Data path expression, 74
Data redundancy, 143–146
DataGuide, 3, 15–16, 59,74
Default value, 44
Denormalization, 139
Dependent object class, 43, 88
Derived attribute, 44, 145
Disjunction, 49
Drop, 116–120,132
Element set, 8
Element, 7
Entity Relationship, 21, 79
Extended Entity Relationship, 4, 21–24, 35
Extended functional dependency, 82
Extraction Rules, 60
Fixed value, 44
Fourth normal form, 79
Functional dependency diagram, 52–55
IDREF, 61,64, 70
IMS, 47, 141–143
Identifier dependency relationship type, 43,88

132, 134
Identifier, 44–45, 61, 64
Inheritance diagram, 55–56

Instance diagram, 49, 51
Integration, 2
Invalid view, 114
Join, 116, 121, 124–125, 132
Key, 107
Level of nested relation, 83
Logical pointer, 142
MIX, 5, 111, 137
Many to many relationship type, 143
Multivalued attribute, 60, 64, 85
NF ORA–SS schema diagram, 88–91
NF-NR, 80, 84–85
NF-SS, 4, 109
NNF, 80
Nested relational model, 80
Normalization, 4, 77, 80
O-NF, 85, 87
OEM, 3, 13, 15–16
ORA-SS, 4, 12,28, 32,35
Object class list, 38
Object class, 37–38, 64, 85, 88
Object relational model, 158
Object, 60
Ordering, 48
Participation constraint, 38, 66
Physical design, 5
Physical pairing, 142–143
Project, 117
R-NF,86–88
RELAXNG, 4, 9
Recursive query, 145
Redundancy, 77
References, 46–47
Relational database, 139
Relationship type, 38–39, 41–43, 65, 86, 88
Relationship, 8
Relatively stable attribute, 147, 154
Relatively stable relationship type, 147, 154
Replicated 3NF, 140–141

174

Replicated NF ORA-SS schema, 149
Reversible view, 130
S3-NF,4, 108
S3-graph, 3, 16–18,29–31,34
Schema diagram, 37–39, 41–43, 45–49
Schema extraction, 4, 59, 62
Select, 116, 132
SilkRoute, 5, 111
Simple attribute, 60
Single-valued attribute, 60, 64, 85
Strong functional dependency, 140
Subelement, 61, 63
Swap, 116, 125, 127–128, 130, 132
Symmetric query, 141, 143
Ternary relationship type, 38–39, 66
Text segment, 63

Third normal form, 79
Update anomaly, 140
Valid view, 111
Views, 5
Weak identifier, 43
Weak key, 107
XML Schema, 4, 8
XML Tree, 4, 24–28, 35
XML element, 60
XML, 2, 62
XNF, 4, 109–110
XPERANTO, 5,111
Xyleme, 5,111
YAT, 5

About the Authors

Dr Gillian DOBBIE is currently an Associate Professor in the Department
of Computer Science at the University of Auckland, New Zealand, and Deputy
Director of the Software Engineering Programme.
[See http://www.cs.auckland.ac.nz/people/profile.php?id=gdob002]

She received a Ph.D. from the University of Melbourne, an M.Tech.(Hons)
and B.Tech.(Hons) in Computer Science from Massey University. She has
lectured at Massey University, the University of Melbourne, and Victoria Uni-
versity of Wellington, and held visiting research positions at Griffith University
and the National University of Singapore.

Her research interests include formal foundations for databases, object ori-
ented databases, semistructured databases, logic and databases, data warehous-
ing, data mining, access control, e-commerce and data modeling. She has pub-
lished 27 international refereed journal and conference papers. Some of the
publications are listed in http://www.informatik.uni- trier.de/ ley/db/indices/a-
tree/d/Dobbie:Gillian.html.

She is programme co-chair on ADC05 and ADC06, and has served as pro-
gramme co-chair on WEBH2001 and WEBH2002. She has served on pro-
gramme committees for many international conferences including DOOD97,
ADC98, DaWaK01, WISE2002, and ACE2003, and has refereed papers for
international journals such as TPLP and VLDB.

176

Dr. Mong Li LEE is currently an Assistant Professor in the School of Com-
puting at the National University of Singapore. She received her Ph.D. de-
gree in Computer Science from the National University of Singapore in 1999.
Her thesis examines translation, integration and update issues in a federated
database environment. She was awarded the IEEE Singapore Information
Technology Gold Medal for being the top student in the Computer Science
program in 1989.

Mong Li joined the Department of Computer Science, National University
of Singapore, as a Senior Tutor from 1989 to 1999. In 1999, she was appointed
Fellow in the School of Computing and lectured Introduction to Programming
in JAVA, a Lecture-on-Demand module. She was a Visiting Fellow at the Com-
puter Science Department, University of Wisconsin-Madison and Consultant
at QUIQ Incorporated, USA, from September 1999 to August 2000.

Her research interests include the cleaning and integration of heterogeneous
and semistructured data, performance database issues in dynamic environ-
ments, and medical informatics. Her work has been published in ACM SIG-
MOD, ACM SIGKDD, VLDB, ICDE and ER conferences. She is a co-Editor
for the Proceedings of the 17th International Conference on Conceptual Model-
ing (ER 1998) and Proceedings of VLDB 2002 Workshop EEXTT and CAiSE
2002 Workshop DIWeb (LNCS #2590, Springer-Verlag). She is a Program
Committee member of VLDB (2002, 2003, 2004), DASFAA (2003, 2004) and
ER (1998, 1999, 2001, 2003, 2004) and a reviewer for IEEE TKDE and DAMI
journals.

ABOUT AUTHORS 177

Dr. Tok Wang LING is a Professor of the Department of Computer Science,
School of Computing at the National University of Singapore, Singapore. He
was the Head of Information Technology Division, Deputy Head of the De-
partment of Information Systems and Computer Science, and a Vice Dean of
the School. Before joining the University as a lecturer in 1979, he was a sci-
entific staff at Bell Northern Research, Ottawa, Canada. He received his Ph.D.
and M.Math., both in Computer Science, from Waterloo University, Canada,
and B.Sc.(1 Hons) in Mathematics from Nanyang University, Singapore.

His research interests include Data Modeling, Entity-Relationship Approach,
Object-Oriented Data Model, Normalization Theory, Logic and Database, In-
tegrity Constraint Checking, Semistructured Data Model, and Data Warehous-
ing. He has published more than 150 international journal/conference papers
and chapters in books, mainly in data modeling. He also co-edited 12 confer-
ence and workshop proceedings.

He organized and served as program committee co-chair of DASFAA’95,
DOOD’95, ER’98, WISE 2002, and ER 2003. He organized and served/serves
as conference co-chair of Human.Society @Internet conference in 2001 and
2003, WAIM 2004, ER 2004, and DASFAA 2005. He served/serves as work-
shop co-chair of DOOD’95 Post-Conference Workshops, the 8th International
Parallel Computing Workshop, and the International Workshop on Conceptual
Model-directed Web Information Integration and Mining held in conjunction
with ER 2004.

He serves/served on the program committees of more than 100 international
database conferences since 1985. He is currently the chair of the steering com-
mittee of International Conference on Database Systems for Advanced Appli-
cations (DASFAA), a member of the steering committee of International Con-
ference on Conceptual Modeling (ER) and the International Conference on
Human.Society@Internet. He was chair and vice chair of the steering commit-
tee of ER conference and a member of the steering committee of International
Conference on Deductive and Object-Oriented Databases (DOOD).

He is an editor of the journal Data & Knowledge Engineering, International
Journal of Cooperative Information Systems, Journal of Database Manage-
ment, Journal of Data Semantics, and World Wide Web: Internet and Web
Information Systems. He is also an advisor of the ACM Transactions on In-
ternet Technology. He is a member of ACM, IEEE, and Singapore Computer
Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

